Skip to main content
Log in

Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The study of spatio-temporal variability of airborne bacterial communities has recently gained importance due to the evidence that airborne bacteria are involved in atmospheric processes and can affect human health. In this work, we described the structure of airborne microbial communities in two urban areas (Milan and Venice, Northern Italy) through the sequencing, by the Illumina platform, of libraries containing the V5–V6 hypervariable regions of the 16S rRNA gene and estimated the abundance of airborne bacteria with quantitative PCR (qPCR). Airborne microbial communities were dominated by few taxa, particularly Burkholderiales and Actinomycetales, more abundant in colder seasons, and Chloroplasts, more abundant in warmer seasons. By partitioning the variation in bacterial community structure, we could assess that environmental and meteorological conditions, including variability between cities and seasons, were the major determinants of the observed variation in bacterial community structure, while chemical composition of atmospheric particulate matter (PM) had a minor contribution. Particularly, Ba, SO4 2− and Mg2+ concentrations were significantly correlated with microbial community structure, but it was not possible to assess whether they simply co-varied with seasonal shifts of bacterial inputs to the atmosphere, or their variation favoured specific taxa. Both local sources of bacteria and atmospheric dispersal were involved in the assembling of airborne microbial communities, as suggested, to the one side by the large abundance of bacteria typical of lagoon environments (Rhodobacterales) observed in spring air samples from Venice and to the other by the significant effect of wind speed in shaping airborne bacterial communities at all sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Bertolini V, Gandolfi I, Ambrosini R, Bestetti G, Innocente E, Rampazzo G, Franzetti A (2013) Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Appl Microbiol Biotechnol 97:6561–6570. doi:10.1007/s00253-012-4450-0

    Article  CAS  PubMed  Google Scholar 

  • Borchard D, Gillet F, Legendre F (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Bowers RM, Lauber CL, Wiedinmyer C, Hamady M, Hallar AG, Fall R, Knight R, Fierer N (2009) Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl Environ Microbiol 75:5121–5130. doi:10.1128/AEM. 00447-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bowers RM, McLetchie S, Knight R, Fierer N (2011a) Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J 5:601–612. doi:10.1038/ismej.2010.167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bowers RM, Sullivan AP, Costello EK, Collett JL Jr, Knight R, Fierer N, Collett JL (2011b) Sources of bacteria in outdoor air across cities in the midwestern United States. Appl Environ Microbiol 77:6350–6356. doi:10.1128/AEM. 05498-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bowers RM, McCubbin IB, Hallar AG, Fierer N (2012) Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos Environ 50:41–49. doi:10.1016/j.atmosenv.2012.01.005

    Article  CAS  Google Scholar 

  • Bowers RM, Clements N, Emerson JB, Wiedinmyer C, Hannigan MP, Fierer N (2013) Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environ Sci Technol 47:12097–12106. doi:10.1021/es402970s

    Article  CAS  PubMed  Google Scholar 

  • Brodie EL, DeSantis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL, Moberg Parker JP (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci U S A 104:299–304. doi:10.1073/pnas.0608255104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. doi:10.1038/ismej.2012.8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Claesson MJ, O’Sullivan O, Wang Q, Nikkila J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4

  • Córdova-Kreylos AL, Cao Y, Green PG, Hwang H-M, Kuivila KM, Lamontagne MG, Van De Werfhorst LC, Holden PA, Scow KM (2006) Diversity, composition, and geographical distribution of microbial communities in California salt marsh sediments. Appl Environ Microbiol 72:3357–3366. doi:10.1128/AEM. 72.5.3357-3366.2006

    Article  PubMed Central  PubMed  Google Scholar 

  • Dufrene M, Legendre P (2007) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • European Environment Agency (2014) Air quality in Europe

  • Fang ZG, Ouyang ZY, Zheng H, Wang XK, Hu LF (2007) Culturable airborne bacteria in outdoor environments in Beijing, China. Microb Ecol 54:487–496. doi:10.1007/s00248-007-9216-3

    Article  PubMed  Google Scholar 

  • Fierer N, Liu ZZ, Rodriguez-Hernandez M, Knight R, Henn M, Hernandez MT (2008) Short-term temporal variability in airborne bacterial and fungal populations. Appl Environ Microbiol 74:200–207. doi:10.1128/aem. 01467-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Franzetti A, Gandolfi I, Gaspari E, Ambrosini R, Bestetti G (2011) Seasonal variability of bacteria in fine and coarse urban air particulate matter. Appl Microbiol Biotechnol 90:745–753. doi:10.1007/s00253-010-3048-7

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Keats KF, Rivkin RB, Lang AS (2013) Water mass and depth determine the distribution and diversity of Rhodobacterales in an Arctic marine system. FEMS Microbiol Ecol 84:564–576. doi:10.1111/1574-6941.12085

  • Gandolfi I, Bertolini V, Ambrosini R, Bestetti G, Franzetti A (2013) Unravelling the bacterial diversity in the atmosphere. Appl Microbiol Biotechnol 97:4727–4736. doi:10.1007/s00253-013-4901-2

    Article  CAS  PubMed  Google Scholar 

  • Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, Huse S, McHardy AC, Knight R, Joint I, Somerfield P, Fuhrman JA, Field D (2012) Defining seasonal marine microbial community dynamics. ISME J 6:298–308. doi:10.1038/ismej.2011.107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20:459–77. doi:10.1128/CMR.00039-06, table of contents

    Article  PubMed Central  PubMed  Google Scholar 

  • Jarvis KE, Gray AL, Houk RS (2003) Handbook of inductively coupled plasma mass spectrometry

  • Karthikeyan S, Joshi UM, Balasubramanian R (2006) Microwave assisted sample preparation for determining water-soluble fraction of trace elements in urban airborne particulate matter: evaluation of bioavailability. Anal Chim Acta 576:23–30. doi:10.1016/j.aca.2006.05.051

    Article  CAS  PubMed  Google Scholar 

  • Lee S-H, Lee HMH-J, Kim S-J, Kang H, Kim YP (2010) Identification of airborne bacterial and fungal community structures in an urban area by T-RFLP analysis and quantitative real-time PCR. Sci Total Environ 408:1349–1357. doi:10.1016/j.scitotenv.2009.10.061

    Article  CAS  PubMed  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd English edition. Elsevier, Amstrerdam

    Google Scholar 

  • Mantecca P, Gualtieri M, Longhin E, Bestetti G, Palestini P, Bolzacchini E, Camatini M (2012) Adverse biological effects of Milan urban PM looking for suitable molecular markers of exposure. Chem Ind Chem Eng Q 18:635–641. doi:10.2298/CICEQ120206114M

    Article  CAS  Google Scholar 

  • Maron P-AA, Lejon DPHH, Carvalho E, Bizet K, Lemanceau P, Ranjard L, Mougel C (2005) Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmos Environ 39:3687–3695. doi:10.1016/j.atosenv.2005.03.002

    Article  CAS  Google Scholar 

  • Maron PA, Mougel C, Lejon DP H, Carvalho E, Bizet K, Marck G, Cubito N, Lemanceau P, Ranjard L, Lejon DPH (2006) Temporal variability of airborne bacterial community structure in an urban area. Atmos Environ 40:8074–8080. doi:10.1016/j.atmosenv.2006.08.047

    Article  CAS  Google Scholar 

  • Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266

    CAS  PubMed  Google Scholar 

  • O’Malley MA (2008) “Everything is everywhere: but the environment selects”: ubiquitous distribution and ecological determinism in microbial biogeography. Stud Hist Phil Biol Biomed Sci 39:314–325

    Article  Google Scholar 

  • Peccia J, Hernandez M (2006) Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: a review. Atmos Environ 40:3941–3961. doi:10.1016/j.atmosenv.2006.02.029

    Article  CAS  Google Scholar 

  • Peres-Neto PR, Jackson DA, Somers KM (2005) How many principal components? stopping rules for determining the number of non-trivial axes revisited. Comput Stat Data Anal 49:974–997. doi:10.1016/j.csda.2004.06.015

    Article  Google Scholar 

  • Polymenakou PN (2012) Atmosphere: a source of pathogenic or beneficial microbes? Atmosphere (Basel) 3:87–102. doi:10.3390/atmos3010087

    Article  Google Scholar 

  • Rinsoz T, Duquenne P, Greff-Mirguet G, Oppliger A (2008) Application of real-time PCR for total airborne bacterial assessment: comparison with epifluorescence microscopy and culture-dependent methods. Atmos Environ 42:6767–6774. doi:10.1016/j.atmosenv.2008.05.018

    Article  CAS  Google Scholar 

  • Sánchez de la Campa A, García-Salamanca A, Solano J, de la Rosa J, Ramos J-L (2013) Chemical and microbiological characterization of atmospheric particulate matter during an intense African dust event in Southern Spain. Environ Sci Technol 47:3630–3638. doi:10.1021/es3051235

    Article  PubMed  Google Scholar 

  • Scherer P, Sahm H (1981) Influence of sulphur-containing compounds on the growth of Methanosarcina barkeri in a defined medium. Eur J Appl Microbiol Biotechnol 12:28–35. doi:10.1007/BF00508115

  • Schwartz J, Laden F, Zanobetti A (2002) The concentration-response relation between PM2.5 and daily deaths. Environ Health Perspect 110:1025–1029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith DJ, Jaffe DA, Birmele MN, Griffin DW, Schuerger AC, Hee J, Roberts MS (2012) Free tropospheric transport of microorganisms from Asia to North America. Microb Ecol 64:973–985. doi:10.1007/s00248-012-0088-9

    Article  CAS  PubMed  Google Scholar 

  • Squizzato S, Masiol M, Innocente E, Pecorari E, Rampazzo G, Pavoni B (2012) A procedure to assess local and long-range transport contributions to PM2.5 and secondary inorganic aerosol. J Aerosol Sci 46:64–76. doi:10.1016/j.jaerosci.2011.12.001

    Article  CAS  Google Scholar 

  • Team RDC (2008) R: A language and environment for statistical computing

  • Vaïtilingom M, Attard E, Gaiani N, Sancelme M, Deguillaume L, Flossmann AI, Amato P, Delort A-M (2012) Long-term features of cloud microbiology at the puy de Dôme (France). Atmos Environ 56:88–100. doi:10.1016/j.atmosenv.2012.03.072

    Article  Google Scholar 

  • Wainwright M (2003) Microorganisms cultured from stratospheric air samples obtained at 41 km. FEMS Microbiol Lett 218:161–165. doi:10.1016/S0378-1097(02)01138-2

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 5261–5267. doi:10.1128/AEM.00062-07

Download references

Acknowledgments

This work was supported by Grant PRIN 2010_2011 (2010WLNFY2_005) from the Italian Ministry of Research (MIUR). The high-volume samplers (ECHO HiVol, TCR TECORA, Milan, Italy) used for Venice-Mestre and Venice-Porto Marghera were kindly provided by the Regional Agency of Environmental Protection (ARPA-Veneto; www.arpa.veneto.it). Some bioinformatics analyses were performed on CINECA-HPC computer cluster PLX (Grant: IscraC_METEXTRA), Bologna (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Franzetti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1081 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandolfi, I., Bertolini, V., Bestetti, G. et al. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas. Appl Microbiol Biotechnol 99, 4867–4877 (2015). https://doi.org/10.1007/s00253-014-6348-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6348-5

Keywords

Navigation