Skip to main content
Log in

Phytoremediation potentiality of garlic roots for 2,4-dichlorophenol removal from aqueous solutions

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

2,4-Dichlorophenol (2,4-DCP) is considered as an important pollutant because of its high toxicity and wide distribution in wastewaters. Innocuous remediation technologies have been studied for the removal of this pollutant. This study investigated the feasibility of using garlic roots as a plant system for the removal of 2,4-DCP. The optimal conditions for its removal were established based on orthogonal experiments (OA25 matrix). Significant factors that affect removal efficiency, arranged from high to low importance, include pH, reaction time, 2,4-DCP concentration, and H2O2 concentration. In addition, garlic roots could be re-used for as much as three consecutive cycles. The decrease in pH and the increase of Cl ion content in the post-removal solutions indicated that 2,4-DCP dehalogenation occurred during transformation. Changes in the deposition pattern of lignin in roots exposed to 2,4-DCP suggested that several of the products deposited were lignin-type polymers. The acute toxicity test revealed that the post-removal solutions were less toxic than the parent solutions. Therefore, garlic roots have considerable potential to effectively and safely remove 2,4-DCP from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agostini E, Coniglio MS, Milrad SR, Tigier HA, Giulietti MA (2003) Phytoremediation of 2,4-dichlorophenol by Brassica napus hairy roots. Biotechnol Appl Biochem 37:139–144

    Article  CAS  PubMed  Google Scholar 

  • Angelini VA, Orejas J, Medina MI, Agostini E (2011) Scale up of 2,4-dichlorophenol removal from aqueous solutions using Brassica napus hairy roots. J Hazard Mate 185:269–274

    Article  CAS  Google Scholar 

  • Angelini VA, Agostini E, Medina MI, González PS (2014) Use of hairy roots extracts for 2,4-DCP removal and toxicity evaluation by Lactuca sativa test. Environ Sci Pollut Res 21:2531–2539

    Article  CAS  Google Scholar 

  • Antonopoulos VT, Rob A, Ball AS, Wilson MT (2001) Dechlorination of chlorophenols using extracellular peroxidases produced by Streptomyces albus ATCC 3005. Enzyme Microb Tech 29:62–69

    Article  CAS  Google Scholar 

  • Baayen R, Ouellette G, Rioux D (1996) Compartmentalization of decay in carnations resistant to Fusarium oxysporum f. sp. dianthi. Phytopathology 86:1018–1031

    Article  Google Scholar 

  • Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Article  CAS  PubMed  Google Scholar 

  • Braber JM (1980) Catalase and peroxidase in primary bean leaves during development and senescence. Z Pflanzenphysiol 97:135–144

    Article  CAS  Google Scholar 

  • Buchanan ID, Nicell JA (1997) Model development for horseradish peroxidase catalyzed removal of aqueous phenol. Biotechnol Bioeng 54(3):251–261

    Article  CAS  PubMed  Google Scholar 

  • Chai X-S, Hou QX, Luo Q, Zhu JY (2004) Rapid determination of hydrogen peroxide in the wood pulp bleaching streams by a dual-wavelength spectroscopic method. Anal Chim Acta 507:281–284

    Article  CAS  Google Scholar 

  • Chen ZF, Zhao Y, Guo TZ, Gu L (2013) Accumulation and phytoavailability of hexachlorocyclohexane isomers and cadmium in Allium sativum L. under the stress of hexachlorocyclohexane and cadmium. Bull Environ Contam Toxicol 90:182–187

    Article  CAS  PubMed  Google Scholar 

  • Coniglio MS, Busto VD, Gonzále PS, Medina MI, Milrad S, Agostini E (2008) Application of Brassica napushairy root cultures for phenol removal from aqueous solutions. Chemosphere 72:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • De Araujo BS, Dec J, Bollag JM, Pletsch M (2006) Uptake and transformation of phenol and chlorophenols by hairy root cultures of Daucus carota, Ipomoea batatas and Solanum aviculare. Chemosphere 63:642–651

    Article  PubMed  Google Scholar 

  • Dec J, Bollag JM (1994) Dehalogenation of chlorinated phenols during oxidative coupling. Environ Sci Technol 28:484–490

    Article  CAS  PubMed  Google Scholar 

  • Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60–76

    Article  CAS  PubMed  Google Scholar 

  • Ghioureliotis M, Nicell JA (1999) Assessment of soluble products of peroxidase-catalyzed polymerization of aqueous phenol. Enzyme Microb Technol 25:185–193

  • Gong P, Wilke BM, Fleischmann S (1999) Soil-based phytotoxicity of 2,4,6-trinitrotoluene (TNT) to terrestrial higher plants. Arch Environ Contam Toxicol 36:152–157

    Article  CAS  PubMed  Google Scholar 

  • González PS, Capozucca CE, Tigier HA, Milrad SR, Agostini E (2006) Phytoremediation of phenol from wastewater, by peroxidases of tomato hairy root cultures. Enzyme Microb Tech 39:647–653

    Article  Google Scholar 

  • González PS, Agostini E, Milrad S (2008) Comparison of the removal of 2,4-dichlorophenol and phenol from polluted water, by peroxidases from tomato hairy roots, and protective effects of polyethylene glycol. Chemosphere 70:982–989

    Article  PubMed  Google Scholar 

  • Hinner ANP, Hernandez-Ruiz J, Arnao MB, García-Canovas F, Acosta M (1996) A comparative study of the purity, enzyme activity, and inactivation by hydrogen peroxide of commercially available horseradish peroxidase isoenzymes A and C. Biotechnol Bioeng 50:655–662

    Article  Google Scholar 

  • Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245–2264

    Article  CAS  PubMed  Google Scholar 

  • Ikehata K, Nicell JA (2000) Color and toxicity removal following tyrosinasecatalyzed oxidation of phenols. Biotech Pr 16(4):533–540

  • Jakubowski H (2003) On the health benefits of Allium sp. Nutrition 19(2):167–168

    Article  CAS  PubMed  Google Scholar 

  • Klibanov AM, Alberti B, Morris E, Felshin L (1980) Enzymatic removal of toxic phenols and anilines from waste waters. J Appl Biochem 2:414–421

    CAS  Google Scholar 

  • Laurenti E, Ghibaudi E, Ardissone S, Ferrari RP (2003) Oxidation of 2,4-dichlorophenol catalyzed by horseradish peroxidase: characterization of the reaction mechanism by UV-visible spectroscopy and mass spectrometry. J Inorg Biochem 95:171–176

    Article  CAS  PubMed  Google Scholar 

  • Marzouki SM, Almagro L, Sabater-Jara AB, Ros BA, Pedreño MA (2010) Kinetic characterization of a basic peroxidase from garlic (Allium sativum L.) cloves. J Food Sci 75(9):740–746

    Article  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation—a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    Article  CAS  PubMed  Google Scholar 

  • Talano MA, Agostini E, Medina MI, Reinoso H, Tordableb MC, Tigiera HA, Forchetti SM (2006) Changes in lignosuberization of cell walls of tomato hairy roots produced by salt treatment: the relationship with the release of a basic peroxidase. J Plant Physiol 163:740–749

    Article  CAS  PubMed  Google Scholar 

  • Talano MA, Frontera S, González P, Medina MI, Agostini E (2010) Removal of 2,4-diclorophenol from aqueous solutions using tobacco hairy root cultures. J Hazard Mater 176:784–791

    Article  CAS  PubMed  Google Scholar 

  • Talano MA, Busso DC, Paisio CE, González PS, Purro SA, Medina MI, Agostini E (2012) Phytoremediation of 2,4-dichlorophenol using wild type and transgenic tobacco plants. Environ Sci Pollut Res 19:2202–2211

    Article  CAS  Google Scholar 

  • Ucisika AS, Trapp S, Kusk KO (2007) Uptake, accumulation, phytotoxicity, and removal of 2,4-dichlorophenol in willow trees. Environ Toxicol Chem 26(6):1165–1171

    Article  Google Scholar 

  • Wevar Oller AL, Agostini E, Talano MA, Capozucca C, Milrad SR, Tigier HA, Medina MI (2005) Overexpression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum Mill. cv. Pera) hairy roots increases phytoremediation of phenol. Plant Sci 169:1102–1111

    Article  CAS  Google Scholar 

  • Zhang G, Nicell JA (2000) Treatment of aqueous pentachlorophenol by horseradish peroxidase and hydrogen peroxide. Water Res 34:1629–1637

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the 12th Five-Year Plan Project of Science and Technology Support, China (2014BAD14B02); the Natural Science Research Foundation of Jilin Province of China (20140520155JH); and the National Natural Science Foundation of China (41471252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Jun Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, JX., Ren, HJ. et al. Phytoremediation potentiality of garlic roots for 2,4-dichlorophenol removal from aqueous solutions. Appl Microbiol Biotechnol 99, 3629–3637 (2015). https://doi.org/10.1007/s00253-014-6277-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6277-3

Keywords

Navigation