Skip to main content
Log in

Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant yeast strains that display heterologous amylolytic enzymes on their cell surface via the glycosylphosphatidylinositol (GPI)-anchoring system are considered as promising biocatalysts for direct ethanol production from starchy materials. For the effective hydrolysis of these materials, the ratio optimization of multienzyme activity displayed on the cell surface is important. In this study, we have presented a ratio control system of multienzymes displayed on the yeast cell surface by using different GPI-anchoring domains. The novel gene cassettes for the cell-surface display of Streptococcus bovis α-amylase and Rhizopus oryzae glucoamylase were constructed using the Saccharomyces cerevisiae SED1 promoter and two different GPI-anchoring regions derived from Saccharomyces cerevisiae SED1 or SAG1. These gene cassettes were integrated into the Saccharomyces cerevisiae genome in different combinations. Then, the cell-surface α-amylase and glucoamylase activities and ethanol productivity of these recombinant strains were evaluated. The combinations of the gene cassettes of these enzymes affected the ratio of cell-surface α-amylase and glucoamylase activities and ethanol productivity of the recombinant strains. The highest ethanol productivity from raw starch was achieved by the strain harboring one α-amylase gene cassette carrying the SED1-anchoring region and two glucoamylase gene cassettes carrying the SED1-anchoring region (BY-AASS/GASS/GASS). This strain yielded 22.5 ± 0.6 g/L of ethanol from 100 g/L of raw starch in 120 h of fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bao YL, Chen L, Wang HL, Yu XW, Yan ZC (2011) Multi-objective optimization of bioethanol production during cold enzyme starch hydrolysis in very high gravity cassava mash. Bioresour Technol 102(17):8077–8084

    Article  CAS  Google Scholar 

  • Chen DC, Yang BC, Kuo TT (1992) One-step transformation of yeast in stationary phase. Curr Genet 21(1):83–84

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68(10):5136–5141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70(2):1207–1212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuda H, Kondo A, Tamalampudi S (2009) Bioenergy: sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochem Eng J 44(1):2–12

    Article  CAS  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  PubMed  Google Scholar 

  • Hasunuma T, Sung K, Sanda T, Yoshimura K, Matsuda F, Kondo A (2011) Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 90(3):997–1004

    Article  CAS  PubMed  Google Scholar 

  • Inokuma K, Hasunuma T, Kondo A (2014) Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnol Biofuels 7(1):8

    Article  PubMed Central  PubMed  Google Scholar 

  • Kondo A, Ueda M (2004) Yeast cell-surface display-applications of molecular display. Appl Microbiol Biotechnol 64(1):28–40

    Article  CAS  PubMed  Google Scholar 

  • Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H, Hata Y, Kondo A, Ueda M (2008) Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng 105(6):622–627

    Article  CAS  PubMed  Google Scholar 

  • Lau MW, Gunawan C, Balan V, Dale BE (2010) Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnol Biofuels 3:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Matano Y, Hasunuma T, Kondo A (2012) Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour Technol 108:128–133

    Article  CAS  PubMed  Google Scholar 

  • Murai T, Ueda M, Shibasaki Y, Kamasawa N, Osumi M, Imanaka T, Tanaka A (1999) Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl Microbiol Biotechnol 51(1):65–70

    Article  CAS  PubMed  Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5a1 for ethanol production from xylose and glucose. Appl Environ Microb 57(10):2810–2815

    CAS  Google Scholar 

  • Olsson L, Hahn-Hägerdal B (1993) Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates. Process Biochem 28(4):249–257

    Article  CAS  Google Scholar 

  • Palmqvist E, Grage H, Meinander NQ, Hahn-Hägerdal B (1999) Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng 63(1):46–55

    Article  CAS  PubMed  Google Scholar 

  • Shimoi H, Kitagaki H, Ohmori H, Iimura Y, Ito K (1998) Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180(13):3381–3387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ueda M, Tanaka A (2000) Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J Biosci Bioeng 90(2):125–136

    Article  CAS  PubMed  Google Scholar 

  • Van der Vaart JM, te Biesebeke R, Chapman JW, Toschka HY, Klis FM, Verrips CT (1997) Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins. Appl Environ Microbiol 63(2):615–620

    PubMed Central  PubMed  Google Scholar 

  • Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010a) Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produce ethanol from raw starch. Appl Microbiol Biotechnol 85(5):1491–1498

    Article  CAS  PubMed  Google Scholar 

  • Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A (2010b) Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact 9:32

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A (2011) Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol Biofuels 4:8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A (2012) Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Enzyme Microb Tech 50(6–7):343–347

    Article  CAS  Google Scholar 

  • Yanase S, Yamada R, Kaneko S, Noda H, Hasunuma T, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol J 5(5):449–455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the commission for the Development of Artificial Gene Synthesis Technology for Creating Innovative Biomaterial from the Ministry of Economy, Trade and Industry (METI), Japan. This work was also supported in part by a Special Coordination Fund for Promoting Science and Technology, Creation of Innovative Centers for Advanced Interdisciplinary Research Areas (Innovative BioProduction Kobe) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kondo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inokuma, K., Yoshida, T., Ishii, J. et al. Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains. Appl Microbiol Biotechnol 99, 1655–1663 (2015). https://doi.org/10.1007/s00253-014-6250-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6250-1

Keywords

Navigation