Skip to main content
Log in

Putrescine production via the agmatine deiminase pathway increases the growth of Lactococcus lactis and causes the alkalinization of the culture medium

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lactococcus lactis is the most important starter culture organism used in the dairy industry. Although L. lactis species have been awarded Qualified Presumption of Safety status by the European Food Safety Authority, and Generally Regarded as Safe status by the US Food and Drug Administration, some strains can produce the biogenic amine putrescine. One such strain is L. lactis subsp. cremoris CECT 8666 (formerly L. lactis subsp. cremoris GE2-14), which was isolated from Genestoso cheese. This strain catabolizes agmatine to putrescine via the agmatine deiminase (AGDI) pathway, which involves the production of ATP and two ammonium ions. The present work shows that the availability of agmatine and its metabolization to putrescine allows for greater bacterial growth (in a biphasic pattern) and causes the alkalinization of the culture medium in a dose-dependent manner. The construction of a mutant lacking the AGDI cluster (L. lactis CECT 8666 Δagdi) confirmed the latter’s direct role in putrescine production, growth, and medium alkalinization. Alkalinization did not affect the putrescine production pattern and was not essential for increased bacterial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bearson S, Bearson B, Foster JW (1997) Acid stress responses in enterobacteria. FEMS Microbiol Lett 147:173–180

    Article  CAS  PubMed  Google Scholar 

  • Beresford TP, Fitzsimons NA, Brennan NL, Cogan TM (2001) Recent advances in cheese microbiology. Int Dairy J 11:259–274

    Article  CAS  Google Scholar 

  • Cai J, Tong HC, Qi FX, Dong XZ (2012) CcpA-dependent carbohydrate catabolite repression regulates galactose metabolism in Streptococcus oligofermentans. J Bacteriol 194:3824–3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou HT, Kwon DH, Hegazy M, Lu CD (2008) Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 190:1966–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vos WM, Vos P, de Haard H, Boerrigter I (1989) Cloning and expression of the Lactococcus lactis subsp. cremoris SK11 gene encoding an extracellular serine proteinase. Gene 85:169–176

    Article  PubMed  Google Scholar 

  • Fernandez M, Linares DM, del Rio B, Ladero V, Alvarez MA (2007) HPLC quantification of biogenic amines in cheeses: correlation with PCR-detection of tyramine-producing microorganisms. J Dairy Res 74:276–282

    Article  CAS  PubMed  Google Scholar 

  • Fernandez E, Alegria A, Delgado S, Martin MC, Mayo B (2011) Comparative phenotypic and molecular genetic profiling of wild Lactococcus lactis subsp. lactis strains of the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes, isolated from starter-free cheeses made of raw milk. Appl Environ Microbiol 77:5324–5335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galgano F, Caruso M, Condelli N, Favati F (2012) Focused review: agmatine in fermented foods. Front Microbiol 3:199

  • Garcia-Villar N, Hernandez-Cassou S, Saurina J (2009) Determination of biogenic amines in wines by pre-column derivatization and high-performance liquid chromatography coupled to mass spectrometry. J Chromatogr A 1216:6387–6393

    Article  CAS  PubMed  Google Scholar 

  • Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4:781–792

    Article  CAS  PubMed  Google Scholar 

  • Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Griswold AR, Jameson-Lee M, Burne RA (2006) Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159. J Bacteriol 188:834–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griswold AR, Nascimento MM, Burne RA (2009) Distribution, regulation and role of the agmatine deiminase system in mutans streptococci. Oral Microbiol Immunol 24:79–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual. In: The John Innes Foundation, N., UK and Cold Spring Harbor Laboratory (ed)

  • Ignatenko NA, Besselsen DG, Roy UK, Stringer DE, Blohm-Mangone KA, Padilla-Torres JL, Guillen RJ, Gerner EW (2006) Dietary putrescine reduces the intestinal anticarcinogenic activity of sulindac in a murine model of familial adenomatous polyposis. Nutr Cancer 56:172–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly WJ, Ward LJ, Leahy SC (2010) Chromosomal diversity in Lactococcus lactis and the origin of dairy starter cultures. Genome Biol Evol 2:729–744

    PubMed  PubMed Central  Google Scholar 

  • Kuipers OP (2001) Complete DNA sequence of Lactococcus lactis adds flavor to genomics. Genome Res 11:673–674

    Article  CAS  PubMed  Google Scholar 

  • Ladero V, Calles-Enriquez M, Fernandez M, Alvarez MA (2010a) Toxicological effects of dietary biogenic amines. Curr Nutr Food Sci 6:145–156

    Article  CAS  Google Scholar 

  • Ladero V, Coton M, Fernandez M, Buron N, Martin MC, Guichard H, Coton E, Alvarez MA (2011a) Biogenic amines content in Spanish and French natural ciders: application of qPCR for quantitative detection of biogenic amine-producers. Food Microbiol 28:554–561

    Article  CAS  PubMed  Google Scholar 

  • Ladero V, Rattray FP, Mayo B, Martin MC, Fernandez M, Alvarez MA (2011b) Sequencing and transcriptional analysis of the biosynthesis gene cluster of putrescine-producing Lactococcus lactis. Appl Environ Microbiol 77:6409–6418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladero V, Cañedo E, Perez M, Martin MC, Fernandez M, Alvarez MA (2012a) Multiplex qPCR for the detection and quantification of putrescine-producing lactic acid bacteria in dairy products. Food Control 27:307–313

    Article  CAS  Google Scholar 

  • Ladero V, Fernandez M, Calles-Enriquez M, Sanchez-Llana E, Cañedo E, Martin MC, Alvarez MA (2012b) Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiol 30:132–138

    Article  CAS  PubMed  Google Scholar 

  • Ladero V, Fernandez M, Cuesta I, Alvarez MA (2010b) Quantitative detection and identification of tyramine-producing enterococci and lactobacilli in cheese by multiplex qPCR. Food Microbiol 27:933–939

  • Larsen R, Buist G, Kuipers OP, Kok J (2004) ArgR and AhrC are both required for regulation of arginine metabolism in Lactococcus lactis. J Bacteriol 186:1147–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linares DM, Martin MC, Ladero V, Alvarez MA, Fernandez M (2011) Biogenic amines in dairy products. Crit Rev Food Sci Nutr 51:691–703

    Article  CAS  PubMed  Google Scholar 

  • Linares DM, del Rio B, Ladero V, Redruello B, Martin MC, Fernandez M, Alvarez MA (2013) The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA. Int J Food Microbiol 165:43–50

    Article  CAS  PubMed  Google Scholar 

  • Llacer JL, Polo LM, Tavarez S, Alarcon B, Hilario R, Rubio V (2007) The gene cluster for agmatine catabolism of Enterococcus faecalis: study of recombinant putrescine transcarbamylase and agmatine deiminase and a snapshot of agmatine deiminase catalyzing its reaction. J Bacteriol 189:1254–1265

    Article  CAS  PubMed  Google Scholar 

  • Lucas PM, Blancato VS, Claisse O, Magni C, Lolkema JS, Lonvaud-Funel A (2007) Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus. Microbiology 153:2221–2230

    Article  CAS  PubMed  Google Scholar 

  • Okada T, Ueyama K, Niiya S, Kanazawa H, Futai M, Tsuchiya T (1981) Role of inducer exclusion in preferential utilization of glucose over melibiose in diauxic growth of Escherichia coli. J Bacteriol 146:1030–1037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redruello B, Ladero V, Cuesta I, Alvarez-Buylla JR, Martin MC, Fernandez M, Alvarez MA (2013) A fast, reliable, ultra high performance liquid chromatography method for the simultaneous determination of amino acids, biogenic amines and ammonium ions in cheese, using diethyl ethoxymethylenemalonate as a derivatising agent. Food Chem 139:1029–1035

    Article  CAS  PubMed  Google Scholar 

  • Romano A, Trip H, Lonvaud-Funel A, Lolkema JS, Lucas PM (2012) Evidence of two functionally distinct ornithine decarboxylation systems in lactic acid bacteria. Appl Environ Microbiol 78:1953–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seiler N, Atanassov CL, Raul F (1998) Polyamine metabolism as target for cancer chemoprevention (review). Int J Oncol 13:993–1006

    CAS  PubMed  Google Scholar 

  • Simon JP, Stalon V (1982) Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis. J Bacteriol 152:676–681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solem C, Defoor E, Jensen PR, Martinussen J (2008) Plasmid pCS1966, a new selection/counterselection tool for lactic acid bacterium strain construction based on the oroP gene, encoding an orotate transporter from Lactococcus lactis. Appl Environ Microbiol 74:4772–4775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solopova A, van Gestel J, Weissing FJ, Bachmann H, Teusink B, Kok J, Kuipers OP (2014) Bet-hedging during bacterial diauxic shift. Proc Natl Acad Sci U S A 111:7427–7432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H, Grandvalet C, Coton E, Coton M, Barnavon L, Bach B, Rattray F, Bunte A, Magni C, Ladero V, Alvarez M, Fernandez M, Lopez P, de Palencia PF, Corbi A, Trip H, Lolkema JS (2010) Biogenic amines in fermented foods. Eur J Clin Nutr 64(Suppl 3):S95–S100

    Article  CAS  PubMed  Google Scholar 

  • Suarez C, Espariz M, Blancato VS, Magni C (2013) Expression of the agmatine deiminase pathway in Enterococcus faecalis is activated by the AguR regulator and repressed by CcpA and PTS(Man) systems. PLoS One 8:e76170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolken WA, Lucas PM, Lonvaud-Funel A, Lolkema JS (2006) The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis. J Bacteriol 188:2198–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was performed with the financial support of the Spanish Ministry of Economy and Competitiveness (AGL2013-45431-R) and the CSIC (201270E144). B. del Rio and D. Linares were beneficiaries of a JAE DOC contract (CSIC). The authors thank Adrian Burton for the linguistic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz del Rio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Rio, B., Linares, D.M., Ladero, V. et al. Putrescine production via the agmatine deiminase pathway increases the growth of Lactococcus lactis and causes the alkalinization of the culture medium. Appl Microbiol Biotechnol 99, 897–905 (2015). https://doi.org/10.1007/s00253-014-6130-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6130-8

Keywords

Navigation