Skip to main content
Log in

Impacts of vegetation, tidal process, and depth on the activities, abundances, and community compositions of denitrifiers in mangrove sediment

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Coastal mangrove wetland is well known to be intense in nitrogen cycling. The tidal process and plants are key factors in controlling the microbial processes in wetlands. However, mechanisms on how these factors and their interactions affect the microorganisms involved in denitrification remain poorly understood. In this study, the impacts of vegetation (bulk, Kandelia obovata, and Spartina alterniflora) and tidal process (falling tide and rising tide) on denitrification activities, abundances, and community compositions of denitrifiers in the sediments from different depths (0–5 and 5–10 cm) were investigated in a microcosm experiment. A significant enhancement of denitrification activities and gene abundances (nirS, nirK, and nosZ) in the vegetated sediments was observed. Activities and abundances were significantly higher in the 0–5-cm sediments when compared with the 5–10-cm counterparts. The effect of interaction between vegetation and tide or depth was also significant. Terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that not only vegetation but also plant species had a significant impact on the community compositions of nirK denitrifiers, while the tidal process affected the community compositions of nirS and nosZ denitrifiers but not nirK denitrifiers. However, depth only significantly shaped the nirS denitrifier communities. These findings demonstrate the effects of these factors and their interactions in shaping the denitrifiers in sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angeloni NL, Jankowski KJ, Tuchman NC, Kelly JJ (2006) Effects of an invasive cattail species (Typha × glauca) on sediment nitrogen and microbial community composition in a freshwater wetland. FEMS Microbiol Lett 263:86–92. doi:10.1111/j.1574-6968.2006.00409.x

    Article  PubMed  CAS  Google Scholar 

  • Bachand PA, Horne AJ (1999) Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecol Eng 14:17–32

    Article  Google Scholar 

  • Bai S, Li J, He Z, Van Nostrand JD, Tian Y, Lin G, Zhou J, Zheng T (2013) GeoChip-based analysis of the functional gene diversity and metabolic potential of soil microbial communities of mangroves. Appl Microbiol Biotechnol 97:7035–7048. doi:10.1007/s00253-012-4496-z

    Article  PubMed  CAS  Google Scholar 

  • Bañeras L, Ruiz-Rueda O, López-Flores R, Quintana X, Hallin S (2012) The role of plant type and salinity in the selection for the denitrifying community structure in the rhizosphere of wetland vegetation. Int Microbiol 15:89–99. doi:10.2436/20.1501.01.162

    PubMed  Google Scholar 

  • Bastviken SK, Eriksson P, Premrov A, Tonderski K (2005) Potential denitrification in wetland sediments with different plant species detritus. Ecol Eng 25:183–190. doi:10.1016/j.ecoleng.2005.04.013

    Article  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. doi:10.1111/j.1574-6941.2009.00654.x

    Article  PubMed  CAS  Google Scholar 

  • Boz B, Rahman MM, Bottegal M, Basaglia M, Squartini A, Gumiero B, Casella S (2013) Vegetation, soil and hydrology management influence denitrification activity and the composition of nirK-type denitrifier communities in a newly afforested riparian buffer. New Biotechnol 30:675–684. doi:10.1016/j.nbt.2013.03.009

    Article  CAS  Google Scholar 

  • Bremer C, Braker G, Matthies D, Reuter A, Engels C, Conrad R (2007) Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil. Appl Environ Microbiol 73:6876–6884. doi:10.1128/AEM.01536-07

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cabrita MT, Brotas V (2000) Seasonal variation in denitrification and dissolved nitrogen fluxes in intertidal sediments of the Tagus estuary, Portugal. Mar Ecol Prog Ser 202:51–65. doi:10.3354/meps202051

    Article  CAS  Google Scholar 

  • Cao H, Li M, Hong Y, Gu J-D (2011) Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment. Syst Appl Microbiol 34:513–523. doi:10.1016/j.syapm.2010.11.023

    Article  PubMed  CAS  Google Scholar 

  • Čuhel J, Šimek M, Laughlin RJ, Bru D, Chèneby D, Watson CJ, Philippot L (2010) Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Appl Environ Microbiol 76:1870–1878. doi:10.1128/AEM.02484-09

    Article  PubMed  PubMed Central  Google Scholar 

  • Ekelund F, Rønn R, Christensen S (2001) Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol Biochem 33:475–481. doi:10.1016/S0038-0717(00)00188-7

    Article  CAS  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176. doi:10.1016/S0038-0717(02)00251-1

    Article  CAS  Google Scholar 

  • Fischer D, Uksa M, Tischler W, Kautz T, Kopke U, Schloter M (2013) Abundance of ammonia oxidizing microbes and denitrifiers in different soil horizons of an agricultural soil in relation to the cultivated crops. Biol Fert Soils 49:1243–1246. doi:10.1007/s00374-013-0812-8

    Article  CAS  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 106 pp

    Google Scholar 

  • Fritze H, Pietikäinen J, Pennanen T (2000) Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest. Eur J Soil Sci 51:565–573. doi:10.1111/j.1365-2389.2000.00346.x

    Article  CAS  Google Scholar 

  • García-Lledó A, Vilar-Sanz A, Trias R, Hallin S, Bañeras L (2011) Genetic potential for N2O emissions from the sediment of a free water surface constructed wetland. Water Res 45:5621–5632. doi:10.1016/j.watres.2011.08.025

    Article  PubMed  Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2003) Influence of depth and sampling time on bacterial community structure in an upland grassland soil. FEMS Microbiol Ecol 43:35–43. doi:10.1016/S0168-6496(02)00400-2

    Article  PubMed  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296. doi:10.1038/nature06592

    Article  PubMed  CAS  Google Scholar 

  • Guo G-X, Deng H, Qiao M, Yao H-Y, Zhu Y-G (2013) Effect of long-term wastewater irrigation on potential denitrification and denitrifying communities in soils at the watershed scale. Environ Sci Technol 47:3105–3113. doi:10.1021/Es304714a

    PubMed  CAS  Google Scholar 

  • Hallin S, Lindgren PE (1999) PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol 65:1652–1657

    PubMed  CAS  PubMed Central  Google Scholar 

  • Henderson SL, Dandie CE, Patten CL, Zebarth BJ, Burton DL, Trevors JT, Goyer C (2010) Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues. Appl Environ Microbiol 76:2155–2164. doi:10.1128/AEM.02993-09

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hou L, Liu M, Xu S, Ou D, Yu J, Cheng S, Lin X, Yang Y (2007) The effects of semi-lunar spring and neap tidal change on nitrification, denitrification and N2O vertical distribution in the intertidal sediments of the Yangtze estuary, China. Estuar Coast Shelf Sci 73:607–616. doi:10.1016/j.ecss.2007.03.002

    Article  Google Scholar 

  • Jones CM, Hallin S (2010) Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. ISME J 4:633–641. doi:10.1038/ismej.2009.152

    Article  PubMed  Google Scholar 

  • Kaspar H (1983) Denitrification, nitrate reduction to ammonium, and inoganic nitrogen pools in intetidal sediments. Mar Biol 74:133–139

    Article  CAS  Google Scholar 

  • Körner H, Zumft WG (1989) Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol 55:1670–1676

    PubMed  PubMed Central  Google Scholar 

  • Laverman AM, Meile C, Van Cappellen P, Wieringa EBA (2007) Vertical distribution of denitrification in an estuarine sediment: integrating sediment flowthrough reactor experiments and microprofiling via reactive transport modeling. Appl Environ Microbiol 73:40–47. doi:10.1128/AEM.01442-06

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li M, Cao H, Hong Y, Gu J-D (2011) Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments. Appl Microbiol Biotechnol 89:1243–1254. doi:10.1007/s00253-010-2929-0

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li M, Hong Y, Cao H, Gu J-D (2013) Community structures and distribution of anaerobic ammonium oxidizing and nirS-encoding nitrite-reducing bacteria in surface sediments of the South China Sea. Microbial Ecol 66:281–296. doi:10.1007/s00248-012-0175-y

    Article  CAS  Google Scholar 

  • Magalhães CM, Machado A, Matos P, Bordalo AA (2011) Impact of copper on the diversity, abundance and transcription of nitrite and nitrous oxide reductase genes in an urban European estuary. FEMS Microbiol Ecol 77:274–284. doi:10.1111/j.1574-6941.2011.01107.x

    Article  PubMed  Google Scholar 

  • Molstad L, Dörsch P, Bakken LR (2007) Robotized incubation system for monitoring gases (O2, NO, N2O N2) in denitrifying cultures. J Microbiol Meth 71:202–211. doi:10.1016/j.mimet.2007.08.011

    Article  CAS  Google Scholar 

  • Orwin KH, Wardle DA, Greenfield LG (2006) Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology 87:580–593. doi:10.1890/05-0383

    Article  PubMed  Google Scholar 

  • Ottosen LDM, Risgaard-Petersen N, Nielsen LP (1999) Direct and indirect measurements of nitrification and denitrification in the rhizosphere of aquatic macrophytes. Aquat Microb Ecol 19:81–91. doi:10.3354/ame019081

    Article  Google Scholar 

  • Papaspyrou S, Smith CJ, Dong LF, Whitby C, Dumbrell AJ, Nedwell DB (2014) Nitrate reduction functional genes and nitrate reduction potentials persist in deeper estuarine sediments. Why? Plos One 9:e94111

    Article  PubMed  PubMed Central  Google Scholar 

  • Pell M, Stenberg B, Stenström J, Torstensson L (1996) Potential denitrification activity assay in soil—with or without chloramphenicol? Soil Biol Biochem 28:393–398. doi:10.1016/0038-0717(95)00149-2

    Article  CAS  Google Scholar 

  • Peralta RM, Ahn C, Voytek MA, Kirshtein JD (2013) Bacterial community structure of nirK-bearing denitrifiers and the development of properties of soils in created mitigation wetlands. Appl Soil Ecol 70:70–77. doi:10.1016/j.apsoil.2013.04.008

    Article  Google Scholar 

  • Perryman SE, Rees GN, Walsh CJ, Grace MR (2011) Urban stormwater runoff drives denitrifying community composition through changes in sediment texture and carbon content. Microb Ecol 61:932–940. doi:10.1007/s00248-011-9833-8

    Article  PubMed  Google Scholar 

  • Philippot L, Hallin S, Börjesson G, Baggs E (2009) Biochemical cycling in the rhizosphere having an impact on global change. Plant Soil 321:61–81. doi:10.1007/s11104-008-9796-9

    Article  CAS  Google Scholar 

  • Philippot L, Andert J, Jones CM, Bru D, Hallin S (2011) Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Glob Chang Biol 17:1497–1504. doi:10.1111/j.1365-2486.2010.02334.x

    Article  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. doi:10.1038/nrmicro3109

    Article  PubMed  CAS  Google Scholar 

  • Ravishankara A, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125. doi:10.1126/science.1176985

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Rueda O, Hallin S, Bañeras L (2009) Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiol Ecol 67:308–319. doi:10.1111/j.1574-6941.2008.00615.x

    Article  PubMed  CAS  Google Scholar 

  • Stubner S, Wind T, Conrad R (1998) Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria. Syst Appl Microbiol 21:569–578. doi:10.1016/S0723-2020(98)80069-6

    Article  PubMed  CAS  Google Scholar 

  • Thompson SP, Paerl HW, Go MC (1995) Seasonal patterns of nitrification and denitrification in a natural and a restored salt marsh. Estuaries 18:399–408. doi:10.2307/1352322

    Article  CAS  Google Scholar 

  • Throbäck IN, Enwall K, Jarvis Å, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417. doi:10.1016/j.femsec.2004.04.011

    Article  PubMed  Google Scholar 

  • Van Der Nat FJ, Middelburg JJ (2000) Methane emission from tidal freshwater marshes. Biogeochemistry 49:103–121. doi:10.1023/A:1006333225100

    Article  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:468–478

    Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65. doi:10.1016/j.scitotenv.2006.09.014

    Article  PubMed  CAS  Google Scholar 

  • Wolsing M, Priemé A (2004) Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments. FEMS Microbiol Ecol 48:261–271. doi:10.1016/j.femsec.2004.02.002

    Article  PubMed  CAS  Google Scholar 

  • Wrage N, Velthof G, Van Beusichem M, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732. doi:10.1016/S0038-0717(01)00096-7

    Article  CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Natural Science Foundation of Fujian Province (2012J05070), the Natural Science Foundation of China (31000254), and the International Science & Technology Cooperation Program of China (2011DFB91710). We thank Lars Molstad (UMB Nitrogen group, Norwegian University of Life Sciences) for providing software and constructing the robotized incubation system for analyzing gas kinetics. We would like to thank Prof. Laurent Philippot from INRA for the valuable suggestions on the earlier version of this manuscript and Prof. Christopher Günther T. Rensing from the University of Copenhagen for the critical reading and for revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian-Ling Zheng or Xiao-Ru Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HT., Su, JQ., Zheng, TL. et al. Impacts of vegetation, tidal process, and depth on the activities, abundances, and community compositions of denitrifiers in mangrove sediment. Appl Microbiol Biotechnol 98, 9375–9387 (2014). https://doi.org/10.1007/s00253-014-6017-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6017-8

Keywords

Navigation