Skip to main content
Log in

Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez-Cohen L, Speitel GE (2001) Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12:105–126

    CAS  PubMed  Google Scholar 

  • Aylward FO, McDonald BR, Adams SM, Valenzuela A, Schmidt RA, Goodwin LA, Woyke T, Currie CR, Suen G, Poulsen M (2013) Comparison of 26 Sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 79:3724–3733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ambrosio ST, Campos-Takaki GM (2004) Decolorization of reactive azo dyes by Cunninghamella elegans UCP 542 under co-metabolic conditions. Bioresour Technol 91:69–75

    CAS  PubMed  Google Scholar 

  • Andersen HR, Siegrist H, Halling-Sorensen B, Ternes TA (2003) Fate of estrogens in municipal sewage treatment plant. Environ Sci Technol 37:4021–4026

    CAS  PubMed  Google Scholar 

  • Babtie A, Tokuriki N, Hollfelder F (2010) What makes an enzyme promiscuous? Curr Opin Chem Biol 14:200–207

    CAS  PubMed  Google Scholar 

  • Batt AL, Kim S, Aga DS (2006) Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge. Environ Sci Technol 40:7367–7373

    CAS  PubMed  Google Scholar 

  • Bouju H, Ricken B, Beffa T, Corvini PF, Kolvenbach BA (2012) Isolation of bacterial strains capable of sulfamethoxazole mineralization from an acclimated membrane bioreactor. Appl Environ Microbiol 78:277–279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brandt BW, van Leeuwen IMM, Kooijman SALM (2003) A general model for multiple substrate biodegradation. Application to co-metabolism of structurally non-analogous compounds. Water Res 37:4843–4854

    CAS  PubMed  Google Scholar 

  • Cajthawl T, Kresinova Z, Svobodova K, Sigler K, Rezanka T (2009) Microbial transformation of synthetic estrogen 17α-ethinylestradiol. Environ Pollut 157:3325–3335

    Google Scholar 

  • Cao Q, Yu Q, Donnell DW (2008) Degradation rate constants of steroids in sewage works and receiving water. Environ Technol 29:1321–1330

    CAS  PubMed  Google Scholar 

  • Çeçen F, Kocameni BA, Aktas Ö (2009) Metabolic and co-metabolic degradation of industrially important chlorinated organics under aerobic conditions. In: Fatta-Kassimos D et al (eds) Xenobiotics in the urban water cycle, Series “Environmental Pollution”, vol 16. Springer, Heidelberg, pp 161–178

    Google Scholar 

  • Chang H-L, Alvarez-Cohen L (1995) Model for the cometabolic biodegradation of chlorinated organics. Environ Sci Technol 29:2357–2367

    CAS  PubMed  Google Scholar 

  • Chen X, Nielsen JL, Furgal K, Liu Y, Lolas IB, Bester K (2011) Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions. Chemosphere 84:452–456

    CAS  PubMed  Google Scholar 

  • Clara M, Strenn B, Saracevic E, Kreuzinger N (2004) Adsorption of bisphenol-A, 17β-estradiol and 17α-ethinylestradiol to sewage sludge. Chemosphere 56:843–851

    CAS  PubMed  Google Scholar 

  • Clouzot L, Marrot B, Doumenq P, Roche N (2008) 17α-ethinylestradiol: an endocrine disruptor of great concern. Analytical methods and removal processes applied to water purification. A review. Environ Prog 27:383–396

    CAS  Google Scholar 

  • Collado N, Buttiglieri G, Marti E, Ferrando-Climent L, Rodriguez-Mozaz S, Barcelo D, Comas J, Rodriguez-Roda I (2013) Effects on activated sludge bacterial community exposed to sulfamethoxazole. Chemosphere 93:99–106

    CAS  PubMed  Google Scholar 

  • Copley SD, Rokicki J, Turner P, Daligault H, Nolan M, Land M (2012) The whole genom sequence of Sphingobium chlorophenolicum L-1: insights into the evolution of the pentachlorophenol degradation pathway. Genome Biol Evol 4:184–198

    PubMed Central  PubMed  Google Scholar 

  • Corvini PFX, Schäffer A, Schlosser D (2006) Microbial degradation of nonylphenol and other alkylphenols—our evolving view. Appl Microbiol Biotechnol 72:223–243

    CAS  PubMed  Google Scholar 

  • Criddle CS (1993) The kinetics of cometabolism. Biotechnol Bioeng 72:1048–1056

    Google Scholar 

  • Dalton H, Stirling DI (1982) Co-metabolism. Phil Trans R Soc London B 297:481–496

    CAS  Google Scholar 

  • Daniel JA, Chris MY, Michael RH (2001) Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12:81–103

    Google Scholar 

  • De Gusseme B, Pycke B, Hennebel T, Marcoen A, Vlaeminck SE, Noppe H, Boon N, Verstraete W (2009) Biological removal of 17α-ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor. Water Res 43:2493–2503

    PubMed  Google Scholar 

  • Delgadillo-Mirquez L, Lardon L, Steyer J-P, Patureau D (2011) A new dynamic model for bioavailability and cometabolism of micropollutants during anaerobic digestion. Water Res 45:4511–4521

    CAS  PubMed  Google Scholar 

  • Dimitrov S, Pavlov T, Nedelcheva D, Reuschenbach P, Silvani M, Bias R, Comber M, Low L, Lee C, Parkerton T, Mekenyan O (2007) A kinetic model for predicting biodegradation. SAR QSAR Environ Res 18:443–457

    CAS  PubMed  Google Scholar 

  • Dytczak MA, Londry KL, Oleszkiewicz JA (2008) Biotransformation of estrogens in nitrifying activated sludge under aerobic and alternating anoxic/aerobic conditions. Water Environ Res 80:47–52

    CAS  PubMed  Google Scholar 

  • Eganhouse R, Pontolillo J, Gaines R, Frysinger G, Gabriel FLP, Kohler H-PE, Giger W, Barber L (2009) Isomer-specific determination of 4-nonylphenols using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Environ Sci Technol 43:9306–9313

    CAS  PubMed  Google Scholar 

  • Elias M, Dupuy J, Merone L, Mandrich L, Porzio E (2008) Structural basis for natural lactonase and promiscuous phosphotriesterase activities. J Mol Biol 379:1017–1028

    CAS  PubMed  Google Scholar 

  • Estrada-Arriaga EB, Mijaylova NP (2010) A comparison of biodegradation kinetic models applied to estrogen removal with nitrifying activated sludge. Water Sci Technol 62:2183–2189

    CAS  PubMed  Google Scholar 

  • Evangelista S, Cooper DG, Yargeau V (2010) The effect of structure and a secondary carbon source on the microbial degradation of chlorophenoxy acids. Chemosphere 79:1084–1088

    CAS  PubMed  Google Scholar 

  • Fischer K, Fries E, Körner W, Schmalz C, Zwiener C (2012) New developments in the trace analysis of organic water pollutants. Appl Microbiol Biotechnol 94:11–28

    CAS  PubMed  Google Scholar 

  • Forrez I, Carballa M, Noppe H, De Brabander H, Boon N, Verstraete W (2009) Influence of manganese and ammonium oxidation on the removal of 17α-ethinylestradiol (EE2). Water Res 43:77–86

    CAS  PubMed  Google Scholar 

  • Fournier D, Hawari J, Streger SH, McClay K, Hatzinger PB (2006) Biotransformation of N-nitrosodimethylamine by Pseudomonas mendocina KR1. Appl Environ Microbiol 72:6693–6698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujita Y, Reinhard M (1997) Identification of metabolites from the biological transformation of the nonionic surfactant residue octylphenoxyacetic acid and its brominated analog. Environ Sci Technol 31:1518–1524

    CAS  Google Scholar 

  • Gabriel FLP, Giger W, Guenther K, Kohler H-PE (2005a) Differential degradation of nonylphenol isomers by Sphingonomas xenophaga Bayram. Appl Environ Microbiol 71:1123–1129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gabriel FLP, Heidlberger A, Rentsch D, Giger W, Guenther K, Kohler H-PE (2005b) A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by Sphingonomas xenophaga Bayram. J Biol Chem 280:15525–15533

    Google Scholar 

  • Gabriel FLP, Mora MA, Kolvenbach BA, Corvini PFX, Kohler H-PE (2012) Formation of toxic 2-nonyl-p-benzoquinones from α-tertiary 4-nonylphenol isomers during microbial metabolism of technical nonylphenol. Environ Sci Technol 46:5979–5987

    CAS  PubMed  Google Scholar 

  • Gao J, Ellis LB, Wackett LP (2011) The University of Minnesota pathway prediction system: multi-level prediction and visualization. Nucleic Acids Res 39:W406–W411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaulke LS, Strand SE, Kalhorn TF, Stensel HD (2008) 17α-ethinylestradiol transformation via abiotic nitration in the presence of ammonia oxidizing bacteria. Environ Sci Technol 42:7622–7627

    CAS  PubMed  Google Scholar 

  • Gauthier H, Yargeau V, Cooper DG (2010) Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Sci Total Environ 408:1701–1706

    CAS  PubMed  Google Scholar 

  • Giger W, Gabriel FLP, Jonkers N, Wettstein FE, Kohler H-PE (2009) Environmental fate of phenolic endocrine disruptors: field and laboratory studies. Phil Trans R Soc A 367:3941–3963

    CAS  PubMed  Google Scholar 

  • Gosh PK, Philip L (2004) Atrazine degradation in anaerobic environment by a mixed microbial consortium. Water Res 38:2277–2284

    Google Scholar 

  • Gutendorf B, Westendorf J (2001) Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. Toxicology 166:79–89

    CAS  PubMed  Google Scholar 

  • Harper WF Jr, Floyd-Smith T, Yi T (2008) Chemical processes during biological wastewater treatment. In: Aga DS (ed) Fate of pharmaceuticals in the environment and in water treatment systems. CRC Press, Boca Raton, pp 363–382

    Google Scholar 

  • Helbling DE, Hollender J, Kohler H-P, Singer H, Fenner K (2010a) High-throughput identification of microbial transformation products of organic micropollutants. Environ Sci Technol 44:6621–6627

    CAS  PubMed  Google Scholar 

  • Helbling DE, Hollender J, Kohler H-P, Singer H, Fenner K (2010b) Structure-based interpretation of biotransformation pathways of amide-containing compounds in sludge-seeded bioreactors. Environ Sci Technol 44:6628–6635

    CAS  PubMed  Google Scholar 

  • Helbling DE, Johnson DR, Honti M, Fenner K (2012) Micropollutant biotransformation kinetics associate with WWTP process parameters and microbial community characteristics. Environ Sci Technol 46:10579–10588

    CAS  PubMed  Google Scholar 

  • Hernandez-Perez G, Fayolle F, Vandecasteele J-P (2001) Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE), and t-amyl methylether (TAME) by Gordonia terrae. Appl Microbiol Biotechnol 55:117–121

    CAS  PubMed  Google Scholar 

  • Hult K, Berglund P (2007) Enzyme promiscuity: mechanisms and applications. Trends Biotechnol 25:231–238

    CAS  PubMed  Google Scholar 

  • Ieda T, Horii Y, Petrick G, Yamashita N, Ochiai N, Kannan K (2005) Analysis of nonylphenol isomers in a technical mixture and in water by comprehensive two-dimensional gas chromatography mass spectrometry. Environ Sci Technol 39:7202–7207

    CAS  PubMed  Google Scholar 

  • Jacobson SN, O’Mara NL, Alexander M (1980) Evidence for cometabolism in sewage. Appl Environ Microbiol 40:917–921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joss A, Anderson H, Ternes T, Richle PR, Siegrist H (2004) Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization. Environ Sci Technol 38:3047–3055

    CAS  PubMed  Google Scholar 

  • Kern S, Baumgartner R, Helbling DE, Hollender J, Singer H, Loos MJ, Schwarzenbach RP, Fenner K (2010) A fixed procedure for assessing the formation of biotransformation products of pharmaceuticals and biocides during activated sludge treatment. J Environ Monit 12:2100–2111

    CAS  PubMed  Google Scholar 

  • Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79:471–505

    CAS  PubMed  Google Scholar 

  • Khunjar WO, Mackintosh SA, Skotnicka-Pitak J, Baik S, Aga DS, Love NG (2011) Elucidating the relative roles of ammonia oxidizing and heterotrophic bacteria during the biotransformation of 17α-ethinylestradiol and trimethoprim. Environ Sci Technol 45:3605–3612

    CAS  PubMed  Google Scholar 

  • Kim JY, Ryu K, Kim EJ, Choe WS, Cha GC, Yoo I-K (2007) Degradation of bisphenol A and nonylphenol by nitrifying activated sludge. Process Biochem 42:1470–1474

    CAS  Google Scholar 

  • Kim Y-H, Cha C-J, Engesser K-H, Kim S-J (2008) Degradation of various alkyl ethers by alkyl ether-degrading Actinobacteria isolated from activated sludge of a mixed wastewater treatment. Chemosphere 73:1442–1447

    CAS  PubMed  Google Scholar 

  • Kim YM, Murugesan K, Schmidt S, Bokare V, Jeon JR, Kim EJ, Cnang YS (2011) Triclosan susceptibility and co-metabolism—a comparison for three aerobic pollutant-degrading bacteria. Bioresour Technol 102:2206–2212

    CAS  PubMed  Google Scholar 

  • Kohler H-PE, Gabriel FLP, Giger W (2008) Ipso-substitution: a novel pathway for microbial metabolism of endocrine-disrupting 4-nonylphenols, 4-alkoxyphenols, and bisphenol A. Chimica 62:358–363

    CAS  Google Scholar 

  • Kraigher B, Kosjek T, Heath E, Kompare B, Mandic-Mulec I (2008) Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Res 42:4578–4588

    CAS  PubMed  Google Scholar 

  • Krauss M, Longrée P, Dorusch F, Ort C, Hollender J (2009) Occurrence and removal of N-nitrosamines in wastewater treatment plants. Water Res 43:4381–4391

    CAS  PubMed  Google Scholar 

  • Kroger M, Schumacher ME, Risse H, Fels G (2004) Biological reduction of TNT as part of combined biological-chemical procedure for mineralization. Biodegradation 15:241–248

    PubMed  Google Scholar 

  • Larcher S, Yargeau V (2011) Biodegradation of sulfamethoxazole by individual and mixed bacteria. Appl Microbiol Biotechnol 91:211–218

    CAS  PubMed  Google Scholar 

  • Lecouturier D, Rochex A, Lebeault JM (2008) The mineralization of 5-amino-2,4,6-triiodoisophthalic acid by a two-stage fixed-bed reactor. Water Res 42:2491–2498

    CAS  PubMed  Google Scholar 

  • Lee DG, Zhao F, Rezenom YH, Russell DH, Chu KH (2012) Biodegradation of triclosan by a wastewater microorganism. Water Res 46:4426–4434

    Google Scholar 

  • Li Y, Montgomery-Brown J, Reinhard M (2011) Biotransformation of halogenated nonylphenols with Sphingobium xenophagum Bayram and a nonylphenol-degrading soil-enrichment culture. Arch Environ Contam Toxicol 60:212–219

    CAS  PubMed  Google Scholar 

  • Likitmongkonsakun N, Limpiyakorn T (2013) Effect of real wastewater on biotransformation of 17α-ethinylestradiol by ammonia-oxidizing bacteria in nitrifiying activated sludge. Int J Environ Earth Sci Eng 7:82–86

    Google Scholar 

  • Limpiyakorn T, Homklin S, Ong SK (2011) Fate of estrogens and estrogenic potentials in sewage systems. Crit Rev Environ Sci Technol 41:1231–1270

    CAS  Google Scholar 

  • Liu Y, Hu J, Xu B, He J, Gao P, Liu K, Xue G, Ognier S (2013a) Isolation and identification of a iopromide-degrading strain and its application in an A2/O-system. Bioresour Technol 134:36–42

    CAS  PubMed  Google Scholar 

  • Liu Z, Dai Y, Huan Y, Sun L, Zhou Q, Zhang W, Sang Q, Wei H, Yuan S (2013b) Different utilizable substrates have different effects on cometabolic fate of imidacloprid in Stenotrophomonas maltophilia. Appl Microbiol Biotechnol 97:6537–6547

    CAS  PubMed  Google Scholar 

  • Lozano N, Rice CP, Ramirez M, Torrents A (2013) Fate of triclocarbon, triclosan and methyltriclosan during wastewater and biosolids treatment processes. Water Res 47:4519–4527

    CAS  PubMed  Google Scholar 

  • Maeng SK, Choi BG, Lee KT, Song KG (2013) Influences of solid retention time, nitrification and microbial activity on the attenuation of pharmaceuticals and estrogens in membrane bioreactors. Water Res 47:3151–3162

    CAS  PubMed  Google Scholar 

  • Majewsky M, Gallé T, Yargeau V, Fischer K (2011) Active heterotrophic biomass and sludge retention time (SRT) as determining factors for biodegradation kinetics of pharmaceuticals in activated sludge. Bioresour Technol 102:7415–7421

    CAS  PubMed  Google Scholar 

  • Masuda H, McClay K, Steffan RJ, Zylstra GJ (2012) Biodegradation of tetrahydrofuran and 1,4-dioxane by soluble diiron monooxygenase in Pseudonocardia sp. strain ENV478. J Mol Microbiol Biotechnol 22:312–316

    CAS  PubMed  Google Scholar 

  • Mazzei P, Oschkinat H, Piccolo A (2013) Reduced activity of alkaline phosphatase due to host-guest interactions with humic superstructures. Chemosphere 93:1972–1979

    CAS  PubMed  Google Scholar 

  • Mes TZDD, Kujawa-Roeleveld K, Zeeman G, Lettinga G (2008) Anaerobic biodegradation of estrogens —hard to digest. Water Sci Technol 57:1177–1182

    PubMed  Google Scholar 

  • Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG (1992) Quinone chemistry and toxicity. Toxicol Appl Pharmacol 112:2–6

    CAS  PubMed  Google Scholar 

  • Moriya Y, Shigemizu D, Hattori M, Tokimatsu T, Kotera M, Goto S, Kanehlsa M (2010) PathPred: an enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res 38:W138–W143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Müller E, Schüssler W, Horn H, Lemmer H (2013) Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source. Chemosphere 92:969–978

    PubMed  Google Scholar 

  • Nalli S, Cooper DG, Nicell JA (2006) Interaction of metabolites with R. rhodochrous during the biodegradation of di-ester plasticizers. Chemosphere 65:1510–1517

    CAS  PubMed  Google Scholar 

  • Ottmar KJ, Colosi LM, Smith JA (2012) Fate and transport of atorvastatin and simvastatin drugs during conventional wastewater treatment. Chemosphere 88:1184–1189

    CAS  PubMed  Google Scholar 

  • Pajot HF, Farina JI, De Figueroa LIC (2011) Evidence on manganese peroxidase and tyrosinase expression during decolorization of textile industry dyes by Trichosporon akiyoshidainum. Int Biodeterior Biodegrad 65:1199–1207

    CAS  Google Scholar 

  • Pauwels B, Noppe H, De Brabander H, Verstraete W (2008) Comparison of steroid hormone concentration in domestic and hospital wastewater treatment plants. J Environ Eng ASCE 134:933–936

    CAS  Google Scholar 

  • Peng XX, Jia XS (2013) Optimization of parameters for anaerobic co-metabolic degradation of TBBPA. Bioresour Technol 148:386–393

    CAS  PubMed  Google Scholar 

  • Peng XX, Zhang ZL, Luo WS, Jia XS (2013) Biodegradation of tetrabromobisphenol A by a novel Comamonas sp. strain, JXS-2-02, isolated from anaerobic sludge. Bioresour Technol 128:173–179

  • Peng XX, Zhang ZL, Zhao ZL, Jia XS (2012) 16S ribosomal DNA clone libraries to reveal bacterial diversity in anaerobic reactor-degraded tetrabromobisphenol A. Bioresour Technol 112:75–82

    CAS  PubMed  Google Scholar 

  • Pholchan P, Jones M, Donnelly T, Sallis PJ (2008) Fate of estrogens during the biological treatment of synthetic wastewater in a nitrite-accumulating sequencing batch reactor. Environ Sci Technol 42:6141–6147

    CAS  PubMed  Google Scholar 

  • Plosz BG, Leknes H, Thomas KV (2010) Impacts of competitive inhibition, parent compound formation and partitioning behavior on the removal of antibiotics in municipal wastewater treatment. Environ Sci Technol 44:734–742

    CAS  PubMed  Google Scholar 

  • Pomiès M, Choubert J-M, Wisniewski C, Coquery M (2013) Modelling of micropollutant removal in biological wastewater treatments: a review. Sci Total Environ 443:733–748

    PubMed  Google Scholar 

  • Quintana JB, Weiss S, Reemtsma T (2005) Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res 39:2654–2664

    CAS  PubMed  Google Scholar 

  • Racz LA, Muller JG, Goel RK (2012) Fate of selected estrogens in two laboratory scale sequencing batch reactors fed with different organic carbon sources under varying solids retention times. Bioresour Technol 110:35–42

    CAS  PubMed  Google Scholar 

  • Ratola N, Cincinelli A, Alves A, Athanasios K (2012) Occurrence of organic micro contaminants in the wastewater treatment process. A mini review. J Hazard Mater 239–240:1–18

    PubMed  Google Scholar 

  • Reemtsma T, Jekel M (eds) (2006) Organic pollutants in the water cycle. Wiley-VCH, Weinheim

    Google Scholar 

  • Regueiro L, Veiga P, Figueroa M, Alonso-Gutierez J, Stams AJM, Lema JM, Carballa M (2012) Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiol Res 167:581–589

    CAS  PubMed  Google Scholar 

  • Ren Y-X, Nakano K, Nomura M, Chiba N, Nishimura O (2007) Effects of bacterial activity on estrogen removal in nitrifying activated sludge. Water Res 41:3089–3096

    CAS  PubMed  Google Scholar 

  • Richardson SD, Ternes TA (2011) Water analysis: emerging contaminants and current issues. Anal Chem 83:4616–4648

    Google Scholar 

  • Roh H, Subramanya N, Zhao FM, Yu CP, Sandt J, Chu KH (2009) Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere 77:1084–1089

    CAS  PubMed  Google Scholar 

  • Sathyamoorthy S, Chandran K, Ramsburg CA (2013) Biodegradation and cometabolic modeling of selected beta blockers during ammonia oxidation. Environ Sci Technol 47:12835–12843

  • Sauvageau D, Cooper DG, Nicell JA (2009) Relative rates and mechanisms of biodegradation of diester plasticizers mediated by Rhodococcus rhodochrous. Can J Chem Eng 87:499–506

    CAS  Google Scholar 

  • Sayavedra-Soto LA, Gvakharia B, Bottomley PJ, Arp DJ, Dolan ME (2010) Nitrification and degradation of halogenated hydrocarbons—a tenuous balance for ammonia-oxidizing bacteria. Appl Microbiol Biotechnol 86:435–444

    CAS  PubMed  Google Scholar 

  • Sedlak DL, Deeb RA, Hawley EL, Mitch WA, Durbin TD, Mowbray S, Carr S (2005) Sources and fate of nitrosodimethylamine and its precursors in municipal wastewater treatment plants. Water Environ Res 77:32–39

    CAS  PubMed  Google Scholar 

  • Sei K, Kakinoki T, Inoue D, Soda S, Fujita M, Ike M (2010) Evaluation of the biodegradation potential of 1,4-dioxane in river, soil and activated sludge samples. Biodegradation 21:585–591

    CAS  PubMed  Google Scholar 

  • Sharp JO, Sales CM, LeBLanc JC, Liu J, Wood TK, Eltis LD, Mohn WW, Alvarez-Cohen L (2007) An inducible propane monooxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1. Appl Environ Microbiol 73:6930–6938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharp JO, Wood TK, Alvarez-Cohen L (2005) Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnol Bioeng 89:608–618

    CAS  PubMed  Google Scholar 

  • Shawaqfeh AT (2010) Removal of pesticides from water using anaerobic-aerobic biological treatment. Chin J Chem Eng 18:672–680

    CAS  Google Scholar 

  • Shi J, Fujisawa S, Nakai S, Hosomi M (2004) Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia oxidizing bacterium Nitrosomonas europaea. Water Res 38:2323–2330

    CAS  Google Scholar 

  • Singer H, Muller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36:4998–5004

    CAS  PubMed  Google Scholar 

  • Sugumar WR, Sadanandan S (2010) Combined anaerobic–aerobic bacterial degradation of dyes. E-J Chem 7:739–744

    CAS  Google Scholar 

  • Ternes A, Joss A (eds) (2006) Human pharmaceuticals, hormones and fragrances. IWA Publishing, London

    Google Scholar 

  • Torres-Bojorges AX, Buitrón G (2012) Biodegradation of nonylphenols using nitrifying sludge, 4-chlorophenol-adapted consortia and activated sludge in liquid and solid phases. Environ Technol 33:1727–1737

    CAS  PubMed  Google Scholar 

  • Tran NH, Urase T, Kusakabe O (2009) The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds. J Hazard Mater 171:1051–1057

    CAS  PubMed  Google Scholar 

  • Tran NH, Urase T, Ngo HH, Hu J, Ong SL (2013) Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour Technol 146:721–731

    CAS  PubMed  Google Scholar 

  • Urase T, Kikuta T (2005) Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process. Water Res 39:1289–1300

    CAS  PubMed  Google Scholar 

  • Vainberg S, McClay K, Masuda H, Root D, Condee C, Zylstra GJ, Steffan RJ (2006) Biodegradation of ether pollutants by Pseudonocardia sp. strain ENV478. Appl Environ Microbiol 72:5218–5224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Wonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 27:55–64

    Google Scholar 

  • Wendlandt KD, Stottmeister U, Helm J, Soltmann B, Jechorek M, Beck M (2010) The potential of methane-oxidizing bacteria for applications in environmental biotechnology. Eng Life Sci 10:87–102

    CAS  Google Scholar 

  • Xia S, Jia R, Feng F, Xie K, Li H, Jing D, Xu X (2012) Effects of solids retention time on antibiotics removal performance and microbial communities in an A/O-MBR process. Bioresour Technol 106:36–43

    CAS  PubMed  Google Scholar 

  • Xu K, Harper WF Jr, Zhao D (2008) 17α-ethinylestradiol sorption to activated sludge biomass: thermodynamic properties and reaction mechanism. Water Res 42:3146–3152

    CAS  PubMed  Google Scholar 

  • Yan Y, Feng L, Sun L, Zhou Q (2010) Integration of a coagulation step in a cometabolism sequencing batch reactor for the treatment of DSD acid wastewater from a reduction process. Desalination 250:167–171

    CAS  Google Scholar 

  • Yi T, Harper WF (2007) The link between nitrification and biodegradation of 17 alpha-ethinylestradiol. Environ Sci Technol 41:4311–4316

  • Yu C-P, Deeb RA, Chu K-H (2013) Microbial degradation of steroidal estrogens. Chemosphere 91:1225–1235

    CAS  PubMed  Google Scholar 

  • Yu H-Y, Yao L, Ye Z-F (2009) Aerobic granulation for dimethyl phthalate biodegradation in a sequencing batch reactor. Huanjing Kexue/Environ Sci 30:2661–2666

    CAS  Google Scholar 

  • Zhao J-S, Ward OP (2000) Cometabolic biotransformation of nitrobenzene by 3-nitrophenol degrading Pseudomonas putida 2NP8. Can J Microbiol 46:643–652

    CAS  PubMed  Google Scholar 

  • Zhou X, Oleszkiewicz JA (2010) Biodegradation of estrogens in nitrifying activated sludge. Environ Technol 31:1263–1269

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Fischer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, K., Majewsky, M. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms. Appl Microbiol Biotechnol 98, 6583–6597 (2014). https://doi.org/10.1007/s00253-014-5826-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5826-0

Keywords

Navigation