Skip to main content
Log in

Biofilm dynamics characterization using a novel DO-MEA sensor: mass transport and biokinetics

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biodegradation process modeling is an essential tool for the optimization of biotechnologies related to gaseous pollutant treatment. In these technologies, the predominant role of biofilm, particularly under conditions of no mass transfer limitations, results in a need to determine what processes are occurring within the same. By measuring the interior of the biofilms, an increased knowledge of mass transport and biodegradation processes may be attained. This information is useful in order to develop more reliable models that take biofilm heterogeneity into account. In this study, a new methodology, based on a novel dissolved oxygen (DO) and mass transport microelectronic array (MEA) sensor, is presented in order to characterize a biofilm. Utilizing the MEA sensor, designed to obtain DO and diffusivity profiles with a single measurement, it was possible to obtain distributions of oxygen diffusivity and biokinetic parameters along a biofilm grown in a flat plate bioreactor (FPB). The results obtained for oxygen diffusivity, estimated from oxygenation profiles and direct measurements, revealed that changes in its distribution were reduced when increasing the liquid flow rate. It was also possible to observe the effect of biofilm heterogeneity through biokinetic parameters, estimated using the DO profiles. Biokinetic parameters, including maximum specific growth rate, the Monod half-saturation coefficient of oxygen, and the maintenance coefficient for oxygen which showed a marked variation across the biofilm, suggest that a tool that considers the heterogeneity of biofilms is essential for the optimization of biotechnologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • (1998) APHA Standard methods for the examination of water and wastewater, Edition 20

  • Berg P, Risgaard-Petersen N, Silkeborg D (1998) Interpretation of measured concentration profiles in sediment pore water-PI. 1500–1510

  • Beuling EE, van Den Heuvel JC, Ottengraf SP (2000) Diffusion coefficients of metabolites in active biofilms. Biotechnol Bioeng 67:53–60

    Article  CAS  PubMed  Google Scholar 

  • Beyenal H (2000) Combined effect of substrate concentration and flow velocity on effective diffusivity in biofilms. Water Res 34:528–538. doi:10.1016/S0043-1354(99)00147-5

    Article  CAS  Google Scholar 

  • Beyenal H, Lewandowski Z (2002) Internal and external mass transfer in biofilms grown at various flow velocities. 55–61

  • Beyenal H, Tanyolaç A, Lewandowski Z (1998) Measurement of local effective diffusivity in heterogeneous biofilm. Water Sci Technol 38:171–178

    Article  CAS  Google Scholar 

  • Bishop P, Zhang T, Fu Y (1995) Effects of biofilm structure, microbial distributions and mass transport on biodegradation processes. Water Sci Technol 31:143–152

    Article  CAS  Google Scholar 

  • Bonilla D, Mallén M, de la Rica R, Fernández-Sánchez C, Baldi A (2011) Electrical readout of protein microarrays on regular glass slides. Anal Chem 83:1726–1731. doi:10.1021/ac102938z

    Article  CAS  PubMed  Google Scholar 

  • Brouwer H, Klapwijk A, Keesman KJ (1998) Identification of activated sludge and wastewater characteristics using respirometric batch-experiments. Water Res 32:1240–1254. doi:10.1016/S0043-1354(97)00334-5

    Article  CAS  Google Scholar 

  • Chiu ZC, Chen MY, Lee DJ, Tay ST, Tay JH, Show KY (2006) Diffusivity of oxygen in aerobic granules. doi: 10.1002/bit

  • Dawson DA, Trass O (1972) Mass transfer at rough surfaces. Int J Heat Mass Transf 15:1317–1336

    Article  CAS  Google Scholar 

  • Del Campo FJ, Ordeig O, Vigués N, Godino N, Mas J, Muñoz FX (2007) Continuous measurement of acute toxicity in water using a solid state microrespirometer. Sensors Actuators B Chem 126:515–521. doi:10.1016/j.snb.2007.03.038

    Article  Google Scholar 

  • Del Campo FJ, Abad L, Illa X, Prats-Alfonso E, Borrisé X, Cirera JM, Bai H-Y, Tsai Y-C (2014) Determination of heterogeneous electron transfer rate constants at interdigitated nanoband electrodes fabricated by an optical mix-and-match process. Sensors Actuators B Chem 194:86–95. doi:10.1016/j.snb.2013.12.016

    Article  Google Scholar 

  • Dorado AD, Baquerizo G, Maestre JP, Gamisans X, Gabriel D, Lafuente J (2008) Modeling of a bacterial and fungal biofilter applied to toluene abatement: kinetic parameters estimation and model validation. Chem Eng J 140:52–61. doi:10.1016/j.cej.2007.09.004

    Article  CAS  Google Scholar 

  • Dorado AD, Baeza JA, Lafuente J, Gabriel D, Gamisans X (2012) Biomass accumulation in a biofilter treating toluene at high loads—part 1: experimental performance from inoculation to clogging. Chem Eng J 209:661–669. doi:10.1016/j.cej.2012.08.018

    Article  CAS  Google Scholar 

  • Fischer LM, Tenje M, Heiskanen AR, Masuda N, Castillo J, Bentien A, Émneus J, Jakobsen MH, Boisen A (2009) Gold cleaning methods for electrochemical detection applications. Microelectron Eng 86:1282–1285. doi:10.1016/j.mee.2008.11.045

    Article  CAS  Google Scholar 

  • Fu YC, Zhang TC, Bishop PL (1994) Determination of effective oxygen diffusivity in biofilms grown in a completely mixed biodrum reactor. Water Sci. Technol. Pergamon Press Inc, pp 455–462

  • Gabriel G, Erill I, Caro J, Gómez R, Riera D, Villa R, Godignon P (2007) Manufacturing and full characterization of silicon carbide-based multi-sensor micro-probes for biomedical applications. Microelectron J 38:406–415. doi:10.1016/j.mejo.2006.11.008

    Article  CAS  Google Scholar 

  • Gao X, Lee J, White HS (1995) Natural convection at microelectrodes. Anal Chem 67:1541–1545. doi:10.1021/ac00105a011

    Article  CAS  Google Scholar 

  • Godino N, Dávila D, Vigués N, Ordeig O, del Campo FJ, Mas J, Muñoz FX (2008) Measuring acute toxicity using a solid-state microrespirometer. Sensors Actuators B Chem 135:13–20. doi:10.1016/j.snb.2008.06.056

    Article  CAS  Google Scholar 

  • Guimera A, Gabriel G, Plata-Cordero M, Montero L, Maldonado MJ, Villa R (2012) A non-invasive method for an in vivo assessment of corneal epithelium permeability through tetrapolar impedance measurements. Biosens Bioelectron 31:55–61. doi:10.1016/j.bios.2011.09.039

    Article  CAS  PubMed  Google Scholar 

  • Guimerà A, Illa X, Traver E, Plata-Cordero M, Yeste J, Herrero C, Lagunas C, Maldonado MJ, Villa R (2013) Flexible probe for in vivo quantification of corneal epithelium permeability through non-invasive tetrapolar impedance measurements. Biomed Microdevices 15:849–858. doi:10.1007/s10544-013-9772-x

    Article  PubMed  Google Scholar 

  • Hibiya K, Nagai J, Tsuneda S, Hirata A (2004) Simple prediction of oxygen penetration depth in biofilms for wastewater treatment. Biochem Eng J 19:61–68. doi:10.1016/j.bej.2003.10.003

    Article  CAS  Google Scholar 

  • Hille A, Neu TR, Hempel DC, Horn H (2009) Effective diffusivities and mass fluxes in fungal biopellets. Biotechnol Bioeng 103:1202–1213. doi:10.1002/bit.22351

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Deshusses MA (2003) Development and experimental validation of a conceptual model for biotrickling filtration of H2S. 119–128

  • La Rosa CD, Yu T (2006) Development of an automation system to evaluate the three-dimensional oxygen distribution in wastewater biofilms using microsensors. Sensors Actuators B Chem 113:47–54. doi:10.1016/j.snb.2005.02.025

    Article  Google Scholar 

  • Lee J-H, Lim T-S, Seo Y, Bishop PL, Papautsky I (2007) Needle-type dissolved oxygen microelectrode array sensors for in situ measurements. Sensors Actuators B Chem 128:179–185. doi:10.1016/j.snb.2007.06.008

    Article  Google Scholar 

  • Lewandowski Z, Beyenal H (2007) Fundamentals of biofilm research. 452

  • Liu S, Chen Y (2009) Measurement of dissolved oxygen and its diffusivity in aerobic granules using a microelectrode array. Environ Sci Technol 43:1160–1165

    Article  CAS  PubMed  Google Scholar 

  • Melo LF, Frias RR (2004) Biofilm physical structure, internal diffusivity and tortuosity. Water Sci Technol 52:77–84

  • Mitchell DA, von Meien OF, Krieger N, Dalsenter FDH (2004) A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochem Eng J 17:15–26. doi:10.1016/S1369-703X(03)00120-7

    Article  CAS  Google Scholar 

  • Mottola HA (1978) Enzymic substrate determination in closed flow-through systems by sample injection and amperometric monitoring of dissolved oxygen levels. Anal Chem 50:94–98

    Article  Google Scholar 

  • Ning Y-F, Chen Y-P, Li S, Guo J-S, Gao X, Fang F, Shen Y, Zhang K (2012) Development of an in situ dissolved oxygen measurement system and calculation of its effective diffusion coefficient in a biofilm. Anal Methods 4:2242. doi:10.1039/c2ay25132a

    Article  CAS  Google Scholar 

  • Okabe S, Itoh T, Satoh H, Watanabe Y (1999) Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl Environ Microbiol 65:5107–5116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paliteiro C (1994) (100)-Type behaviour of polycrystalline gold towards O2 reduction. Electrochim Acta 39:1633–1639

    Article  CAS  Google Scholar 

  • Perry RH, Green DW (1997) Perry’s chemical engineer’s handbook, 7th edition. Mc Graw-Hill

  • Picioreanu C, van Loosdrecht MC, Heijnen JJ (1998) Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng 58:101–116

    Article  CAS  PubMed  Google Scholar 

  • Prehn R, Abad L, Sánchez-Molas D, Duch M, Sabaté N, del Campo FJ, Muñoz FX, Compton RG (2011) Microfabrication and characterization of cylinder micropillar array electrodes. J Electroanal Chem 662:361–370. doi:10.1016/j.jelechem.2011.09.002

    Article  CAS  Google Scholar 

  • Rasmussen K, Lewandowski Z (1998) Microelectrode measurements of local mass transport rates in heterogeneous biofilms. Biotechnol Bioeng 59:302–309

    Article  CAS  PubMed  Google Scholar 

  • Revsbech N, Jørgensen B (1986) Microelectrodes: their use in microbial ecology. Adv Microb Ecol 9:293–352

    Article  Google Scholar 

  • Revsbech NP, Nielsen LP, Ramsing NB (1998) A novel microsensor for determination of apparent diffusivity in sediments. Limnol Oceanogr 43:986–992

    Article  CAS  Google Scholar 

  • Schramm A, Larsen LH, Revsbech NP, Ramsing NB, Amann R, Schleifer KH (1996) Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol 62:4641–4647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwermer CU, Lavik G, Abed RMM, Dunsmore B, Ferdelman TG, Stoodley P, Gieseke A, de Beer D (2008) Impact of nitrate on the structure and function of bacterial biofilm communities in pipelines used for injection of seawater into oil fields. Appl Environ Microbiol 74:2841–2851. doi:10.1128/AEM.02027-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu C-C, Yasukawa T, Shiku H, Matsue T (2005) Fabrication of miniature Clark oxygen sensor integrated with microstructure. Sensors Actuators B Chem 110:342–349. doi:10.1016/j.snb.2005.02.014

    Article  CAS  Google Scholar 

  • Yang S, Lewandowski Z (1995) Measurement of local mass transfer coefficient in biofilms. Biotechnol Bioeng 48:737–744. doi:10.1002/bit.260480623

    Article  CAS  PubMed  Google Scholar 

  • Yurt N, Sears J, Lewandowski Z (2002) Multiple substrate growth kinetics of Leptothrix discophora SP-6. Biotechnol Prog 18:994–1002. doi:10.1021/bp0255098

    Article  CAS  PubMed  Google Scholar 

  • Yurt N, Beyenal H, Sears J, Lewandowski Z (2003) Quantifying selected growth parameters of Leptothrix discophora SP-6 in biofilms from oxygen concentration profiles. Chem Eng Sci 58:4557–4566. doi:10.1016/S0009-2509(03)00344-0

    Article  CAS  Google Scholar 

  • Zhang TC, Bishop PL (1994) Density, porosity, and pore structure of biofilms. Water Res 28:2267–2277. doi:10.1016/0043-1354(94)90042-6

    Article  CAS  Google Scholar 

  • Zhou X-H, Liu J, Song H-M, Qiu Y-Q, Shi H-C (2012) Estimation of heterotrophic biokinetic parameters in wastewater biofilms from oxygen concentration profiles by microelectrode. Environ Eng Sci 29:466–471. doi:10.1089/ees.2010.0456

    Article  CAS  Google Scholar 

  • Zhu X, Suidan MT, Alonso C, Yu T, Kim BJ, Kim BR (2001) Biofilm structure and mass transfer in a gas phase trickle-bed biofilter. Water Sci Technol 43:285–293

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been founded by projects DPI2011-28262-C04 and CTM2012-37927-C03/FEDER, financed by the Ministerio de Economía y Competitividad (Spain). Ana Moya gratefully acknowledges an FPI-2012 predoctoral scholarship, and Xavier Guimerà also acknowledges an FPI-UPC predoctoral scholarship, both from Ministerio de Economía y Competitividad (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Gamisans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimerà, X., Moya, A., Dorado, A.D. et al. Biofilm dynamics characterization using a novel DO-MEA sensor: mass transport and biokinetics. Appl Microbiol Biotechnol 99, 55–66 (2015). https://doi.org/10.1007/s00253-014-5821-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5821-5

Keywords

Navigation