Skip to main content
Log in

Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Plants harbors complex and variable microbial communities. Endophytic bacteria play an important function and potential role more effectively in developing sustainable systems of crop production. To examine how endophytic bacteria in sugar beet (Beta vulgaris L.) vary across both host growth period and location, PCR-based Illumina was applied to revealed the diversity and stability of endophytic bacteria in sugar beet on the north slope of Tianshan mountain, China. A total of 60.84 M effective sequences of 16S rRNA gene V3 region were obtained from sugar beet samples. These sequences revealed huge amount of operational taxonomic units (OTUs) in sugar beet, that is, 19–121 OTUs in a beet sample, at 3 % cutoff level and sequencing depth of 30,000 sequences. We identified 13 classes from the resulting 449,585 sequences. Alphaproteobacteria were the dominant class in all sugar beets, followed by Acidobacteria, Gemmatimonadetes and Actinobacteria. A marked difference in the diversity of endophytic bacteria in sugar beet for different growth periods was evident. The greatest number of OTUs was detected during rossette formation (109 OTUs) and tuber growth (146 OTUs). Endophytic bacteria diversity was reduced during seedling growth (66 OTUs) and sucrose accumulation (95 OTUs). Forty-three OTUs were common to all four periods. There were more tags of Alphaproteobacteria and Gammaproteobacteria in Shihezi than in Changji. The dynamics of endophytic bacteria communities were influenced by plant genotype and plant growth stage. To the best of our knowledge, this study is the first application of PCR-based Illumina pyrosequencing to characterize and compare multiple sugar beet samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams PD, Kloepper JW (2002) Effect of host genotype on indigenous bacterial endophytes of cotton (Gossypium hirsutum L.). Plant Soil 240:181–189

    Article  CAS  Google Scholar 

  • Botella L, Santamaría O, Diez JJ (2010) Fungi associated with the decline of Pinus halepensis in Spain. Fungal Divers 40:1–11

    Article  Google Scholar 

  • Carroll GC (1995) Forest endophytes: pattern and process. Can J Bot 73:1316–1324

    Article  Google Scholar 

  • Chen HB (2012) Venn Diagram: generate high-resolution Venn and Euler plots. Rpackage version 113

  • Cocolin L, Rantsiou K, Iacumin L, Cantoni C, Comi G (2002) Direct identification in food samples of Listeria spp. and Listeria monocytogenes by molecular methods. Appl Environ Microbiol 68:6273–6282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collado J, Platas G, Paleaz F (2001) Identification of an endophytic Nodulisporium sp. from Quercus ilexin central Spain as the anamorph of Biscogniauxia mediterranea by rDNA sequence analysis and effect of different ecological factors on distribution of the fungus. Mycologia 93:875–886

    Article  CAS  Google Scholar 

  • Cottrell MT, Kirchman DL (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66:5116–5122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunbar J, Takala S, Barns SM, Davis JA, Kuske CR (1999) Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65:1662–1669

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fisher PJ, Anson AE, Petrini O (1986) Fungal endophytes in Ulex europaeus and U. galli. Trans Br Mycol Soc 86:153–156

    Article  Google Scholar 

  • Fisher PJ, Petrini O (1990) A comparative study of fungal endophytes in xylem and bark of Alnus sp. in England and Switzerland. Mycol Res 94:313–319

    Article  Google Scholar 

  • Fisher PJ, Petrini O, Petrini LE, Sutton BC (1994) Fungal endophytes from the leaves and twigs of Quercus ilex L. from England, Majorca and Switzerland. New Phytol 127:133–137

    Article  Google Scholar 

  • Foissner W (1999) Protist diversity: estimates of the near-imponderable. Protist 150:363–368

    Article  CAS  PubMed  Google Scholar 

  • Foissner W (2008) Protist diversity and distribution: some basic considerations. Biodivers Conserv 17:235–242

    Article  Google Scholar 

  • Gardner JM, Feldman AW, Zablotowicz M (1982) Identity and behaviour of xylem-residing bacteria in rough lemon roots of Florida citrus trees. Appl Environ Microbiol 43:1335–1342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gloor GB, Hummelen R, Macklaim JM, Dickson RJ, Fernandes AD, MacPhee R, Reid G (2010) Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products. PLoS One 5:e15406

    Article  PubMed Central  PubMed  Google Scholar 

  • Guo LD, Huang G, Wang Y (2008) Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in the Dongling Mountains, Beijing. J Integr Plant Biol 50:997–1003

    Article  PubMed  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Helander M, Wali P, Kuuluvainen T, Saikkonen K (2006) Birch leaf endophytes in managed and natural boreal forests. Can J For Res 36:3239–3245

    Google Scholar 

  • Huse SM, Dethlefsen L, Huber JA, Mark WD, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4:e1000255

    Article  PubMed Central  PubMed  Google Scholar 

  • Jacobs MJ, William MB, David AG (1985) Enumeration, location, characterization of endophytic bacteria within sugar beet roots. Can J Bot 63:1262–1265

    Article  Google Scholar 

  • Johnson JA, Whitney NJ (1994) Cytotoxicity and insecticidal activity of endophytic fungi from Black Spruce (Picea mariana) needles. Can J Microbiol 40:24–27

    Article  Google Scholar 

  • Kauhanen M., Vainio EJ, Hantula J, Eyjolfsdottir GG, Niemelä P (2006) Endophytic fungi in Siberian larch (Larix sibirica) needles. Forest Pathology 36:434–446

    Google Scholar 

  • Kibe R, Sakamoto M, Yokota H, Ishikawa H, Aiba Y, Koga Y, Benno Y (2005) Movement and fixation of intestinal microbiota after administration of human feces to germfree mice. Appl Environ Microbiol 71:3171–3178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In CW Bacon, JF White, eds, Microbial Endophytes. CRC Press, New York, pp 199–229

  • Kolde R (2012) pheatmap: Pretty Heatmaps. Rpackage version 061

  • Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, Osteras M, Schrenzel J, François P (2009) Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods 79:266–271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Legault D, Dessureault M, Laflamme G (1989) Mycoflora of Pinus banksiana and Pinus resinosa needles. II. Epiphytic fungi. Can J Bot 67:2061–2065

    Google Scholar 

  • Lodewyck C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential application. Crit Rev Plant Sci 86(6):583–606

    Article  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86–90

    Article  CAS  PubMed  Google Scholar 

  • Martín-García J, Espiga E, Pando V, Diez JJ (2011) Factors infuencing endophytic communities in poplar plantations. Silva Fennica 45:169–180

    Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, van der Lelie D, Campbell CD, Moore ER (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  CAS  PubMed  Google Scholar 

  • Pan MJ, Rademan S, Kuner K, Hastings JW (1997) Ultrastructural studies on the colonisation of banana tissue and Fusarium oxysporum f. sp. cubenserace 4 by the endophytic bacterium Burkholderia cepacia. J Phytopathol 145:479–486

    Article  Google Scholar 

  • Paul FK, Josephine YA (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47:161–177

    Article  Google Scholar 

  • Petrini O, Carroll GC (1981) Endophytic fungi in foliage of some Cupressaceae in Oregon. Can J Bot 59:629–636

    Google Scholar 

  • Rademaker JLW, Louws FJ, de Bruijn FJ (1998) Characterisation of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. Molecular microbial ecology manual. Kluwer Academic Publishers, Netherlands, pp 1–27

    Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues KF (1994) The foliar fungal endophytes of the Amazonian palm Euterpe oleracea. Mycologia 86:376–385

    Article  Google Scholar 

  • Roll Hansen F, Roll Hansen H (1979) Ascocoryne species in living stems of Picea spp. Eur J For Pathol 5:275–280

    Article  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Samish Z, Etinger-Tulczynska R, Bick M (1963) The microflora within the tissue of soft fruit and vegetables. J Food Sci 28:259–266

    Article  Google Scholar 

  • Shi YW, Lou K, Li C (2009) Promotion of plant growth by phytohormone producing endophytic microbes of sugar beet. Biol Fertil Soils 45:645–653

    Article  CAS  Google Scholar 

  • Shi YW, Lou K, Li C (2010) Growth and photosynthetic efficiency promotion of sugar beet (Beta vulgaris L.) by endophytic bacteria. Photosynth Res 105:5–13

    Article  CAS  PubMed  Google Scholar 

  • Shi YW, Lou K, Li C (2011) Growth promotion effects of the endophyte Acinetobacter johnsonii strain 3-1 on sugar beet. Symbiosis 54(3):159–166

    Article  CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith DR, Quinlan AR, Peckham HE, Makowsky K, Tao W, Woolf B, Shen L, Donahue WF, Tusneem N, Stromberg MP, Stewart DA, Zhang L, Ranade SS, Warner JB, Lee CC, Coleman BE, Zhang Z, McLaughlin SF, Malek JA, Sorenson JM, Blanchard AP, Chapman J, Hillman D, Chen F, Rokhsar DS, McKernan KJ, Jeffries TW, Marth GT, Richardson PM (2008) Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome Res 18:1638–1642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spear GT, Sikaroodi M, Zariffard MR, Landay AL, French AL, Gillevet PM (2008) Comparison of the diversity of the vaginal microbiota in HIV-infected and HIV-uninfected women with or without bacterial vaginosis. J Infect Dis 198:1131–1140

    Article  PubMed Central  PubMed  Google Scholar 

  • Spiers AJ, Buckling A, Raineythen PB (2000) The causes QJ; of Pseudomonas diversity. Microbiology 146:2345–2350

    CAS  PubMed  Google Scholar 

  • Sprent JI, de Faria SM (1988) Mechanisms of infection of plants by nitrogen fixing organisms. Plant Soil 110:157–165

    Article  Google Scholar 

  • Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424

    Article  CAS  PubMed  Google Scholar 

  • Tanprasert P, Reed BM (1997) Detection and identification of bacterial contaminants from strawberry runner explants. In Vitro Cell Dev Biol 33:221–226

    Article  Google Scholar 

  • Tauxe RV, Hargrett-Bean N, Patton CM, Wachsmuth IK (1988) Campylobacter isolates in the United States, 1982–1986. Morbid Mortal Wkly Rep 37:1–13

    CAS  Google Scholar 

  • Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814

    Article  CAS  PubMed  Google Scholar 

  • von Mering C, Hugenholtz P, Raes J, Tringe SG, Doerks T, Jensen LJ, Ward N, Bork P (2007) Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315:1126–1130

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project No. 31060018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Lou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Yang, H., Zhang, T. et al. Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl Microbiol Biotechnol 98, 6375–6385 (2014). https://doi.org/10.1007/s00253-014-5720-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5720-9

Keywords

Navigation