Skip to main content
Log in

Effects of roxithromycin on ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in the rhizosphere of wheat

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In a pot-cultural experiment, the impact of the antibiotic roxithromycin (ROX) addition was assessed on the diversities of microbial structure and function communities, especially involved in ammonia and nitrite oxidation in wheat rhizosphere soil with and without the addition of earthworms. The abundances of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), and total bacteria were surveyed by the quantitative PCR. The quantities of total bacteria, AOB, and NOB with earthworms were higher than those without earthworms because of the synergistic effect. ROX inhibited the growth of AOB in all treatments, although the quantities of AOB were in a light increase in medium and heavy polluted treatments compared with that in the light polluted treatments. Different from AOB, the quantities of NOB were lowest in light polluted treatments, but the quantities of NOB were rapidly increased in medium and heavy polluted treatments compared with that in the control. These results indicated that the application of ROX principally had a negative effect on nitrification performance by affecting the abundances and relative ratios of both AOB and NOB in soil communities, which affected the N cycle in an agricultural ecosystem. According to the metabolic diversities evaluated by the biologic assay, the tendency of metabolic diversities was quite contrary to the quantities of NOB in all treatments and showed the contrast growing relation of autotrophic and heterotrophic bacteria under ROX pollution pressure in agricultural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Attard E, Poly F, Commeaux C, Laurent F, Terada A, Smets BF, Recous S, Roux XL (2010) Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environ Microbiol 12(2):315–326

    Article  CAS  PubMed  Google Scholar 

  • Blackburne R, Vadivelu VM, Yuan Z, Keller J (2007) Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Res 41(14):3033–3042

    Article  CAS  PubMed  Google Scholar 

  • Boleas S, Alonso C, Pro J, Fernández C, Carbonell G, Tarazona JV (2005) Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system (MS · 3) and influence of manure co-addition. J Hazard Mater 122(3):233–241

    Article  CAS  PubMed  Google Scholar 

  • Daims H, Nielsen JL, Nielsen PH, Schleifer K-H, Wagner M (2001) In situ characterization of Nitrospira-Like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67(11):5273–5284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dantas G, Sommer MOA, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320(5872):100–103

    Article  CAS  PubMed  Google Scholar 

  • De Boer W, Klein Gunnewiek PA, Laanbroek HJ (1995) Ammonium-oxidation at low pH by a chemolithotrophic bacterium belonging to the genus Nitrosospira. Soil Biol Biochem 27(2):127–132

    Article  Google Scholar 

  • Dionisi HM, Layton AC, Harms G, Gregory IR, Robinson KG, Sayler GS (2002) Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl Environ Microbiol 68(1):245–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards CA, Fletcher KE (1988) Interactions between earthworms and microorganisms in organic-matter breakdown. Agriculture, Ecosystems & Environment 24(1–3):235–247

    Article  Google Scholar 

  • Figuerola ELM, Erijman L (2010) Diversity of nitrifying bacteria in a full-scale petroleum refinery wastewater treatment plant experiencing unstable nitrification. J Hazard Mater 181(1–3):281–288

    Article  CAS  PubMed  Google Scholar 

  • Freitag TE, Chang L, Clegg CD, Prosser JI (2005) Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in agricultural grassland soils. Appl Environ Microbiol 71(12):8323–8334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furlong MA, Singleton DR, Coleman DC, Whitman WB (2002) Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Applied and Environmental Microbiology 68(3):1265–1279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao L, Shi Y, Li W, Liu J, Cai Y (2012) Occurrence, distribution and bioaccumulation of antibiotics in the Haihe River in China. J Environ Monit 14(4):1247–1254

    Article  CAS  Google Scholar 

  • Gieseke A, Purkhold U, Wagner M, Amann R, Schramm A (2001) Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol 67(3):1351–1362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hagopian DS, Riley JG (1998) A closer look at the bacteriology of nitrification. Aquacult Eng 18(4):223–244

    Article  Google Scholar 

  • Haller MY, Müller SR, McArdell CS, Alder AC, Suter MJF (2002) Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography–mass spectrometry. J Chromatogr A 952(1–2):111–120

    Article  CAS  PubMed  Google Scholar 

  • Hammesfahr U, Heuer H, Manzke B, Smalla K, Thiele-Bruhn S (2008) Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol Biochem 40(7):1583–1591

    Article  CAS  Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz K-L (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225(1–2):109–118

    Article  CAS  PubMed  Google Scholar 

  • Hirsch R, Ternes TA, Haberer K, Mehlich A, Ballwanz F, Kratz K-L (1998) Determination of antibiotics in different water compartments via liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr A 815(2):213–223

    Article  CAS  PubMed  Google Scholar 

  • Hooper A, Vannelli T, Bergmann D, Arciero D (1997) Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuwenhoek 71(1–2):59–67

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Hu X, Yin D, Zhang H, Yu Z (2011) Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere 82(6):822–828

    Article  CAS  PubMed  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75(4):417–434

    Article  PubMed  Google Scholar 

  • Kim YM, Lee DS, Park C, Park D, Park JM (2011) Effects of free cyanide on microbial communities and biological carbon and nitrogen removal performance in the industrial activated sludge process. Water Res 45(3):1267–1279

    Article  CAS  PubMed  Google Scholar 

  • Kong WD, Zhu YG, Fu BJ, Marschner P, He JZ (2006) The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environ Pollut 143(1):129–137

    Article  CAS  PubMed  Google Scholar 

  • Kotzerke A, Sharma S, Schauss K, Heuer H, Thiele-Bruhn S, Smalla K, Wilke B-M, Schloter M (2008) Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environ Pollut 153(2):315–322

    Article  CAS  PubMed  Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammoia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55(1):485–529

    Article  CAS  PubMed  Google Scholar 

  • Kowalchuk GA, Stephen JR, De Boer W, Prosser JI, Embley TM, Woldendorp JW (1997) Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol 63(4):1489–1497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Zhang Y, Yang M, Kamagata Y (2013) Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system. Front Environ Sci Eng 7(1):43–48

    Article  CAS  Google Scholar 

  • Liu F, Wu J, Ying G-G, Luo Z, Feng H (2012a) Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline. Appl Microbiol Biotechnol 95(6):1615–1623

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Pan N, Chen W, Jiao W, Wang M (2012b) Effect of veterinary oxytetracycline on functional diversity of soil microbial community. Plant Soil Environ 58(7):295–301

    CAS  Google Scholar 

  • Maixner F, Noguera DR, Anneser B, Stoecker K, Wegl G, Wagner M, Daims H (2006) Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environ Microbiol 8(8):1487–1495

    Article  CAS  PubMed  Google Scholar 

  • Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157(11):2893–2902

    Article  CAS  PubMed  Google Scholar 

  • Muratova A, Golubev S, Wittenmayer L, Dmitrieva T, Bondarenkova A, Hirche F, Merbach W, Turkovskaya O (2009) Effect of the polycyclic aromatic hydrocarbon phenanthrene on root exudation of Sorghum bicolor (L.) Moench. Environ Exp Bot 66(3):514–521

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10(11):2966–2978

    Article  CAS  PubMed  Google Scholar 

  • Norton J, Alzerreca J, Suwa Y, Klotz M (2002) Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch Microbiol 177(2):139–149

    Article  CAS  PubMed  Google Scholar 

  • Ollivier J, Kleineidam K, Reichel R, Thiele-Bruhn S, Kotzerke A, Kindler R, Wilke B-M, Schloter M (2010) Effect of sulfadiazine-contaminated pig manure on the abundances of genes and transcripts involved in nitrogen transformation in the root-rhizosphere complexes of Maize and Clover. Appl Environ Microbiol 76(24):7903–7909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ollivier J, Schacht D, Kindler R, Groeneweg J, Engel M, Wilke B-M, Kleineidam K, Schloter M (2013) Effects of repeated application of sulfadiazine-contaminated pig manure on the abundance and diversity of ammonia and nitrite oxidizers in the root-rhizosphere complex of pasture plants under field conditions. Front Microbiol 4:22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pedersen J, Hendriksen N (1993) Effect of passage through the intestinal tract of detritivore earthworms (Lumbricus spp.) on the number of selected Gram-negative and total bacteria. Biol Fertil Soils 16(3):227–232

    Article  Google Scholar 

  • Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thiele-Bruhn S, Sharma S, Wilke B-M, Matthies M, Smalla K, Munch JC, Amelung W, Kaupenjohann M, Schloter M, Schleper C (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11(2):446–456

    Article  CAS  PubMed  Google Scholar 

  • Schlüsener MP, Bester K (2006) Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environ Pollut 143(3):565–571

    Article  PubMed  Google Scholar 

  • Schramm A, de Beer D, van den Heuvel JC, Ottengraf S, Amann R (1999) Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Appl Environ Microbiol 65(8):3690–3696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Segura PA, Francois M, Gagnon C, Sauvé S (2009) Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters. Environ Health Perspect 117:675–684

    Google Scholar 

  • Subler S, Baranski CM, Edwards CA (1997) Earthworm additions increased short-term nitrogen availability and leaching in two grain-crop agroecosystems. Soil Biol Biochem 29(3–4):413–421

    Article  CAS  Google Scholar 

  • Tang C-M, Huang Q-X, Yu Y-Y, Peng X-Z (2009) Multiresidue determination of sulfonamides, macrolides, trimethoprim, and chloramphenicol in sewage sludge and sediment using ultrasonic extraction coupled with solid phase extraction and liquid chromatography-tandem mass spectrometry. Chin J Anal Chem 37(8):1119–1124

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S, Beck I-C (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59(4):457–465

    Article  CAS  PubMed  Google Scholar 

  • Wertz S, Leigh AKK, Grayston SJ (2012) Effects of long-term fertilization of forest soils on potential nitrification and on the abundance and community structure of ammonia oxidizers and nitrite oxidizers. Fems Microbiol Ecol 79(1):142–154

    Article  CAS  PubMed  Google Scholar 

  • Wetzstein H-G, Stadler M, Tichy H-V, Dalhoff A, Karl W (1999) Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the Brown Rot Fungus Gloeophyllum striatum. Appl Environ Microbiol 65(4):1556–1563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto N, Otawa K, Nakai Y (2010) Diversity and abundance of ammonia-oxidizing bacteria and ammonia-oxidizing archaea during cattle manure composting. Microb Ecol 60(4):807–815

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Zhang J, Zhu K, Zhang H (2009) Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil. J Environ Sci 21(7):954–959

    Article  CAS  Google Scholar 

  • You SJ, Hsu CL, Chuang SH, Ouyang CF (2003) Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems. Water Res 37(10):2281–2290

    Article  CAS  PubMed  Google Scholar 

  • Zhou L-J, Ying G-G, Zhao J-L, Yang J-F, Wang L, Yang B, Liu S (2011) Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environmental Pollution 159(7):1877–1885

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China as a key project (grant no. 21037002) and a joint key project (grant no. U1133006), and by the Ministry of Science and Technology, People's Republic of China as an 863 project (grant no. 2012AA101403-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qixing Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, B., Wang, X., Yu, S. et al. Effects of roxithromycin on ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in the rhizosphere of wheat. Appl Microbiol Biotechnol 98, 263–272 (2014). https://doi.org/10.1007/s00253-013-5311-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5311-1

Keywords

Navigation