Skip to main content

Advertisement

Log in

A novel cholesterol-producing Pichia pastoris strain is an ideal host for functional expression of human Na,K-ATPase α3β1 isoform

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The heterologous expression of mammalian membrane proteins in lower eukaryotes is often hampered by aberrant protein localization, structure, and function, leading to enhanced degradation and, thus, low expression levels. Substantial quantities of functional membrane proteins are necessary to elucidate their structure–function relationships. Na,K-ATPases are integral, human membrane proteins that specifically interact with cholesterol and phospholipids, ensuring protein stability and enhancing ion transport activity. In this study, we present a Pichia pastoris strain which was engineered in its sterol pathway towards the synthesis of cholesterol instead of ergosterol to foster the functional expression of human membrane proteins. Western blot analyses revealed that cholesterol-producing yeast formed enhanced and stable levels of human Na,K-ATPase α3β1 isoform. ATPase activity assays suggested that this Na,K-ATPase isoform was functionally expressed in the plasma membrane. Moreover, [3H]-ouabain cell surface-binding studies underscored that the Na,K-ATPase was present in high numbers at the cell surface, surpassing reported expression strains severalfold. This provides evidence that the humanized sterol composition positively influenced Na,K-ATPase α3β1 stability, activity, and localization to the yeast plasma membrane. Prospectively, cholesterol-producing yeast will have high potential for functional expression of many mammalian membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamian L, Naveed H, Liang J (2011) Lipid-binding surfaces of membrane proteins: evidence from evolutionary and structural analysis. Biochim Biophys Acta 1808:1092–1102. doi:10.1016/j.bbamem.2010.12.008

    Article  CAS  Google Scholar 

  • Aperia A (2007) New roles for an old enzyme: Na,K-ATPase emerges as an interesting drug target. J Intern Med 261:44–52. doi:10.1111/j.1365-2796.2006.01745.x

    Article  CAS  Google Scholar 

  • Asada H, Uemura T, Yurugi-Kobayashi T, Shiroishi M, Shimamura T, Tsujimoto H, Ito K, Sugawara T, Nakane T, Nomura N, Murata T, Haga T, Iwata S, Kobayashi T (2011) Evaluation of the Pichia pastoris expression system for the production of GPCRs for structural analysis. Microb Cell Fact 10:24. doi:10.1186/1475-2859-10-24

    Article  CAS  Google Scholar 

  • Beggah A, Mathews P, Beguin P, Geering K (1996) Degradation and endoplasmic reticulum retention of unassembled α- and β-subunits of Na,K-ATPase correlate with interaction of BiP. J Biol Chem 271:20895–20902. doi:10.1074/jbc.271.34.20895

    Article  CAS  Google Scholar 

  • Beggah AT, Jaunin P, Geering K (1997) Role of glycosylation and disulfide bond formation in the β subunit in the folding and functional expression of Na,K-ATPase. J Biol Chem 272:10318–10326. doi:10.1074/jbc.272.15.10318

    Article  CAS  Google Scholar 

  • Beguin P, Hasler U, Beggah A, Horisberger JD, Geering K (1998) Membrane integration of Na,K-ATPase α-subunits and β-subunit assembly. J Biol Chem 273:24921–24931. doi:10.1074/jbc.273.38.24921

    Article  CAS  Google Scholar 

  • Bill R (2001) Yeast—a panacea for the structure–function analysis of membrane proteins? Curr Genet 40:157–171. doi:10.1007/s002940100252

    Article  CAS  Google Scholar 

  • Blanco G (2005) The Na,K-ATPase and its isozymes: what we have learned using the baculovirus expression system. Front Biosci 10:2397. doi:10.2741/1705

    Article  CAS  Google Scholar 

  • Chloupková M, Pickert A, Lee JY, Souza S, Trinh YT, Connelly SM, Dumont ME, Dean M, Urbatsch IL (2007) Expression of 25 human ABC transporters in the yeast Pichia pastoris and characterization of the purified ABCC3 ATPase activity. Biochemistry 46:7992–8003. doi:10.1021/bi700020m

    Article  Google Scholar 

  • Cohen E, Goldshleger R, Shainskaya A, Tal DM, Ebel C, Le Maire M, Karlish SJD (2005) Purification of Na+,K+-ATPase expressed in Pichia pastoris reveals an essential role of phospholipid-protein interactions. J Biol Chem 280:16610–8. doi:10.1074/jbc.M414290200

    Article  CAS  Google Scholar 

  • Cornelius F (2001) Modulation of Na,K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics. Biochemistry 40:8842–8851. doi:10.1021/bi010541g

    Article  CAS  Google Scholar 

  • Cornelius F, Turner N, Christensen HRZ (2003) Modulation of Na,K-ATPase by phospholipids and cholesterol. II. Steady-state and presteady-state kinetics. Biochemistry 42:8541–9. doi:10.1021/bi034532e

    Article  CAS  Google Scholar 

  • Crambert G, Hasler U, Beggah AT, Yu C, Modyanov NN, Horisberger JD, Lelievre L, Geering K (2000) Transport and pharmacological properties of nine different human Na,K-ATPase isozymes. J Biol Chem 275:1976–1986. doi:10.1074/jbc.275.3.1976

    Article  CAS  Google Scholar 

  • Freigassner M, Pichler H, Glieder A (2009) Tuning microbial hosts for membrane protein production. Microb Cell Fact 8:69. doi:10.1186/1475-2859-8-69

    Article  Google Scholar 

  • Fuhrmann M, Hausherr A, Ferbitz L, Schödl T, Heitzer M, Hegemann P (2004) Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol Biol 55:869–881. doi:10.1007/s11103-005-2150-1

    CAS  Google Scholar 

  • Gatto C, McLoud SM, Kaplan JH (2001) Heterologous expression of Na+-K+-ATPase in insect cells: intracellular distribution of pump subunits. Am J Physiol Cell Physiol 281:C982–C992

    CAS  Google Scholar 

  • Geering K (2006) FXYD proteins: new regulators of Na-K-ATPase. Am J Physiol Renal Physiol 290:F241–F250. doi:10.1152/ajprenal.00126.2005

    Article  CAS  Google Scholar 

  • Geering K (2001) The functional role of β subunits in oligomeric P-type ATPases. J Bioenerg Biomembr 33:425–438. doi:10.1023/A:1010623724749

    Article  CAS  Google Scholar 

  • Goddard AD, Watts A (2012) Regulation of G protein-coupled receptors by palmitoylation and cholesterol. BMC Biol 10:27. doi:10.1186/1741-7007-10-27

    Article  CAS  Google Scholar 

  • Haid A, Suissa M (1983) Immunochemical identification of membrane proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Methods Enzymol 96:192–205. doi:10.1016/S0076-6879(83)96017-2

    Article  CAS  Google Scholar 

  • Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EYT, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16:897–905. doi:10.1016/j.str.2008.05.001

    Article  CAS  Google Scholar 

  • Hasler U, Crambert G, Horisberger JD, Geering K (2001) Structural and functional features of the transmembrane domain of the Na,K-ATPase β subunit revealed by tryptophan scanning. J Biol Chem 276:16356–16364. doi:10.1074/jbc.M008778200

    Article  CAS  Google Scholar 

  • Hasler U, Wang X, Crambert G, Beguin P, Jaisser F, Horisberger JD, Geering K (1998) Role of β-subunit domains in the assembly, stable expression, intracellular routing, and functional properties of Na,K-ATPase. J Biol Chem 273:30826–30835. doi:10.1074/jbc.273.46.30826

    Article  CAS  Google Scholar 

  • Haviv H, Cohen E, Lifshitz Y, Tal DM, Goldshleger R, Karlish SJD (2007) Stabilization of Na+,K+-ATPase purified from Pichia pastoris membranes by specific interactions with lipids. Biochemistry 46:12855–12867. doi:10.1021/bi701248y

    Article  CAS  Google Scholar 

  • Haviv H, Habeck M, Kanai R, Toyoshima C, Karlish SJD (2013) Neutral phospholipids stimulate Na,K-ATPase activity: a specific lipid–protein interaction. J Biol Chem 288:10073–81. doi:10.1074/jbc.M112.446997

    Article  CAS  Google Scholar 

  • Heese-Peck A, Pichler H, Zanolari B, Watanabe R, Daum G, Riezman H (2002) Multiple functions of sterols in yeast endocytosis. Mol Biol Cell 13:2664–80. doi:10.1091/mbc.E02-04-0186

    Article  CAS  Google Scholar 

  • Horowitz B, Eakle KA, Scheiner-Bobis G, Randolph GR, Chen CY, Hitzeman RA, Farley RA (1990) Synthesis and assembly of functional mammalian Na,K-ATPase in yeast. J Biol Chem 265:4189–4192

    CAS  Google Scholar 

  • Ivanov AV, Gable ME, Askari A (2004) Interaction of SDS with Na+/K+-ATPase: SDS-solubilized enzyme retains partial structure and function. J Biol Chem 279:29832–29840. doi:10.1074/jbc.M401986200

    Article  CAS  Google Scholar 

  • Jafurulla M, Chattopadhyay A (2013) Membrane lipids in the function of serotonin and adrenergic receptors. Curr Med Chem 20:47–55

    CAS  Google Scholar 

  • Kaplan JH (2002) Biochemistry of Na,K-ATPase. Ann Rev Biochem 71:511–35. doi:10.1146/annurev.biochem.71.102201.141218

    Article  CAS  Google Scholar 

  • Kapri-Pardes E, Katz A, Haviv H, Mahmmoud Y, Ilan M, Khalfin-Penigel I, Carmeli S, Yarden O, Karlish SJD (2011) Stabilization of the α2 isoform of Na,K-ATPase by mutations in a phospholipid binding pocket. J Biol Chem 286:42888–99. doi:10.1074/jbc.M111.293852

    Article  CAS  Google Scholar 

  • Kato M, Wickner W (2001) Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion. EMBO J 20:4035–40. doi:10.1093/emboj/20.15.4035

    Article  CAS  Google Scholar 

  • Katz A, Lifshitz Y, Bab-Dinitz E, Kapri-Pardes E, Goldshleger R, Tal DM, Karlish SJD (2010) Selectivity of digitalis glycosides for isoforms of human Na,K-ATPase. J Biol Chem 285:19582–92. doi:10.1074/jbc.M110.119248

    Article  CAS  Google Scholar 

  • Kitson SM, Mullen W, Cogdell RJ, Bill RM, Fraser NJ (2011) GPCR production in a novel yeast strain that makes cholesterol-like sterols. Methods 55:287–92. doi:10.1016/j.ymeth.2011.09.023

    Article  CAS  Google Scholar 

  • Koenderink JB, Swarts HGP, Hermsen HPH, Willems PHGM, De Pont JJHHM (2000) Mutation of aspartate 804 of Na+,K+-ATPase modifies the cation binding pocket and thereby generates a high Na + ATPase activity. Biochemistry 39:9959–9966. doi:10.1021/bi0001168

    Article  CAS  Google Scholar 

  • Krettler C, Reinhart C, Bevans CG (2013) Expression of GPCRs in Pichia pastoris for structural studies. Methods Enzymol 520:1–29. doi:10.1016/B978-0-12-391861-1.00001-0

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–5. doi:10.1038/227680a0

    Article  CAS  Google Scholar 

  • Lifshitz Y, Lindzen M, Garty H, Karlish SJD (2006) Functional interactions of phospholemman (PLM) (FXYD1) with Na+,K+-ATPase. Purification of α1/β1/PLM complexes expressed in Pichia pastoris. J Biol Chem 281:15790–9. doi:10.1074/jbc.M601993200

    Article  CAS  Google Scholar 

  • Lifshitz Y, Petrovich E, Haviv H, Goldshleger R, Tal DM, Garty H, Karlish SJD (2007) Purification of the human α2 Isoform of Na,K-ATPase expressed in Pichia pastoris. Stabilization by lipids and FXYD1. Biochemistry 46:14937–50. doi:10.1021/bi701812c

    Article  CAS  Google Scholar 

  • Lin-Cereghino J, Wong WW, Xiong S, Giang W, Luong LT, Vu J, Johnson SD, Lin-Cereghino GP (2005) Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. Biotechniques 38(44):46–48

    Google Scholar 

  • Liu JY, Guidotti G (1997) Biochemical characterization of the subunits of the Na+/K+ ATPase expressed in insect cells. Biochim Biophys Acta 1336:370–386. doi:10.1016/S0304-4165(96)00153-5

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr LA, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–276

    CAS  Google Scholar 

  • Lundstrom K, Wagner R, Reinhart C, Desmyter A, Cherouati N, Magnin T, Zeder-Lutz G, Courtot M, Prual C, André N, Hassaine G, Michel H, Cambillau C, Pattus F (2006) Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems. J Struct Funct Genomics 7:77–91. doi:10.1007/s10969-006-9011-2

    Article  CAS  Google Scholar 

  • Mao Q, Conseil G, Gupta A, Cole SPC, Unadkat JD (2004) Functional expression of the human breast cancer resistance protein in Pichia pastoris. Biochem Biophys Res Commun 320:730–737. doi:10.1016/j.bbrc.2004.06.012

    Article  CAS  Google Scholar 

  • Morioka S, Shigemori T, Hara K, Morisaka H, Kuroda K, Ueda M (2013) Effect of sterol composition on the activity of the yeast G-protein-coupled receptor Ste2. Appl Microbiol Biotechnol 97:4013–4020. doi:10.1007/s00253-012-4470-9

    Article  CAS  Google Scholar 

  • Müller-Ehmsen J, Juvvadi P, Thompson CB, Tumyan L, Croyle M, Lingrel JB, Schwinger RHG, McDonough AA, Farley RA (2001) Ouabain and substrate affinities of human Na+,K+-ATPase α1β1, α2β1, and α3β1 when expressed separately in yeast cells. Am J Physiol Cell Physiol 281:C1355–C1364

    Google Scholar 

  • Munn AL, Heese-Peck A, Stevenson BJ, Pichler H, Riezman H (1999) Specific sterols required for the internalization step of endocytosis in yeast. Mol Biol Cell 10:3943–57

    Article  CAS  Google Scholar 

  • Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A (2012) Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PloS ONE 7:e39720. doi:10.1371/journal.pone.0039720

    Article  Google Scholar 

  • Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev 111:6423–51. doi:10.1021/cr200021m

    Article  CAS  Google Scholar 

  • Oates J, Faust B, Attrill H, Harding P, Orwick M, Watts A (2012) The role of cholesterol on the activity and stability of neurotensin receptor 1. Biochim Biophys Acta 1818:2228–33. doi:10.1016/j.bbamem.2012.04.010

    Article  CAS  Google Scholar 

  • Oates J, Watts A (2011) Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol 21:802–7. doi:10.1016/j.sbi.2011.09.007

    Article  CAS  Google Scholar 

  • Ott RG, Athenstaedt K, Hrastnik C, Leitner E, Bergler H, Daum G (2005) Flux of sterol intermediates in a yeast strain deleted of the lanosterol C-14 demethylase Erg11p. Biochim Biophys Acta 1735:111–8. doi:10.1016/j.bbalip.2005.05.003

    Article  CAS  Google Scholar 

  • Ovchinnikov YA, Modyanov N, Broude N, Petrukhin K, Grishin A, Arzamazova N, Aldanova N, Monastyrskaya G, Sverdlov E (1986) Pig kidney Na+,K+-ATPase. FEBS Lett 201:237–245. doi:10.1016/0014-5793(86)80616-0

    Article  CAS  Google Scholar 

  • Pedersen PA, Rasmussen JH, Joergensen PL (1996) Expression in high yield of pig α1β1 Na,K-ATPase and inactive mutants D369N and D807N in Saccharomyces cerevisiae. J Biol Chem 271:2514–2522. doi:10.1074/jbc.271.5.2514

    Article  CAS  Google Scholar 

  • Quail MA, Kelly SL (1996) The extraction and analysis of sterols from yeast. Methods Mol Biol 53:123–31. doi:10.1385/0-89603-319-8:123

    CAS  Google Scholar 

  • Reina C, Padoani G, Carotti C, Merico A, Tripodi G, Ferrari P, Popolo L (2007) Expression of the α3/β1 isoform of human Na,K-ATPase in the methylotrophic yeast Pichia pastoris. FEMS Yeast Res 7:585–94. doi:10.1111/j.1567-1364.2007.00227.x

    Article  CAS  Google Scholar 

  • Ridsdale A, Denis M, Gougeon PY, Jk N, Presley JF, Zha X (2006) Cholesterol is required for efficient endoplasmic reticulum-to-Golgi transport of secretory membrane proteins. Mol Biol Cell 17:1593–1605. doi:10.1091/mbc.E05-02-0100

    Article  CAS  Google Scholar 

  • Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    Article  CAS  Google Scholar 

  • Souza CM, Schwabe TME, Pichler H, Ploier B, Leitner E, Guan XL, Wenk MR, Riezman I, Riezman H (2011) A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance. Metab Eng 13:555–69. doi:10.1016/j.ymben.2011.06.006

    Article  CAS  Google Scholar 

  • Strugatsky D, Gottschalk KE, Goldshleger R, Bibi E, Karlish SJD (2003) Expression of Na+,K+-ATPase in Pichia pastoris: analysis of wild type and D369N mutant proteins by Fe2 + -catalyzed oxidative cleavage and molecular modeling. J Biol Chem 278:46064–73. doi:10.1074/jbc.M308303200

    Article  CAS  Google Scholar 

  • Toyoshima C, Kanai R, Cornelius F (2011) First crystal structures of Na+,K+-ATPase: new light on the oldest ion pump. Structure 19:1732–8. doi:10.1016/j.str.2011.10.016

    Article  CAS  Google Scholar 

  • Umebayashi K, Nakano A (2003) Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J Cell Biol 161:1117–31. doi:10.1083/jcb.200303088

    Article  CAS  Google Scholar 

  • Wriessnegger T, Pichler H (2013) Yeast metabolic engineering—targeting sterol metabolism and terpenoid formation. Prog Lipid Res 52:277–93. doi:10.1016/j.plipres.2013.03.001

    Article  CAS  Google Scholar 

  • Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem 276:33540–6. doi:10.1074/jbc.M104776200

    Article  CAS  Google Scholar 

  • Zeder-Lutz G, Cherouati N, Reinhart C, Pattus F, Wagner R (2006) Dot-blot immunodetection as a versatile and high-throughput assay to evaluate recombinant GPCRs produced in the yeast Pichia pastoris. Protein Expr Purif 50:118–127. doi:10.1016/j.pep.2006.05.017

    Article  CAS  Google Scholar 

  • Zheng H, Pearsall EA, Hurst DP, Zhang Y, Chu J, Zhou Y, Reggio PH, Loh HH, Law PY (2012) Palmitoylation and membrane cholesterol stabilize μ-opioid receptor homodimerization and G protein coupling. BMC Cell Biol 13:6. doi:10.1186/1471-2121-13-6

    Article  CAS  Google Scholar 

  • Zinser E, Daum G (1995) Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast 11:493–536. doi:10.1002/yea.320110602

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Laura Popolo for sending us the P. pastoris S-α3β1 strain and the human Na,K-ATPase α3β1 isoform expression plasmid, Steven Karlish for the generous gift of anti-KETYY and anti-GERK antibodies, Guenther Daum for providing his laboratory for radioactive experiments and for the Pma1p antibody, Gloria Padoani for kind assistance via e-mail, and Helmut Schwab for valuable advice. H.P. acknowledges support by a NAWI Graz GASS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Pichler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirz, M., Richter, G., Leitner, E. et al. A novel cholesterol-producing Pichia pastoris strain is an ideal host for functional expression of human Na,K-ATPase α3β1 isoform. Appl Microbiol Biotechnol 97, 9465–9478 (2013). https://doi.org/10.1007/s00253-013-5156-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5156-7

Keywords

Navigation