Skip to main content
Log in

Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, the influence of culture conditions (irradiance, temperature, pH, and dissolved oxygen) on the photosynthesis rate of Scenedesmus almeriensis cultures is analyzed. Short-run experiments were performed to study cell response to variations in culture conditions, which take place in changing environments such as outdoor photobioreactors. Experiments were performed by subjecting diluted samples of cells to different levels of irradiance, temperature, pH, and dissolved oxygen concentration. Results demonstrate the existence of photoinhibition phenomena at irradiances higher than 1,000 μE/m2 s; in addition to reduced photosynthesis rates at inadequate temperatures or pH—the optimal values being 35 °C and 8, respectively. Moreover, photosynthesis rate reduction at dissolved oxygen concentrations above 20 mg/l is demonstrated. Data have been used to develop an integrated model based on considering the simultaneous influence of irradiance, temperature, pH, and dissolved oxygen. The model fits the experimental results in the range of culture conditions tested, and it was validated using data obtained by the simultaneous variation of two of the modified variables. Furthermore, the model fits experimental results obtained from an outdoor culture of S. almeriensis performed in an open raceway reactor. Results demonstrate that photosynthetic efficiency is modified as a function of culture conditions, and can be used to determine the proximity of culture conditions to optimal values. Optimal conditions found (T = 35 °C, pH = 8, dissolved oxygen concentration <20 mg/l) allows to maximize the use of light by the cells. The developed model is a powerful tool for the optimal design and management of microalgae-based processes, especially outdoors, where the cultures are subject to daily culture condition variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acién FG, Garcia F, Sanchez JA, Fernández JM, Molina E (1998) Modelling of biomass productivity in tubular photobioreactors for microalgal cultures. Effects of dilution rate, tube diameter and solar irradiance. Biotechnol Bioeng 58(6):605–616

    Article  Google Scholar 

  • Acién FG, García F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. Prog Ind Microbiol 35:231–247

    Article  Google Scholar 

  • Acien F, González-López CV, Fernández JM, Molina E (2012) Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Appl Microbiol Biotechnol 96:577–586

    Article  Google Scholar 

  • Acién FG, Fernández JM, Molina E (2013) Photobioreactors for the production of microalgae. Rev Env Sci Biotechnol 1–21

  • Allen M, Arnon DI (1955) Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen-fixation by Anabaena cylindrica. Plant Physiol 30:366–372

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Von Caemmerer S, Ruuska S, Nakano H, Laisk A, Allen JF, Asada K, Matthijs HCP, Griffiths H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philos Trans R Soc B Biol Sci 355:1433–1446

    Article  CAS  Google Scholar 

  • Béchet Q, Shilton A, Park JBK, Craggs RJ, Guieysse B (2011) Universal temperature model for shallow algal ponds provides improved accuracy. Environ Sci Technol 45:3702–3709

    Article  PubMed  Google Scholar 

  • Berenguel M, Rodríguez F, Acién FG, García JL (2004) Model predictive control of pH in tubular photobioreactors. J Process Control 14:377–387

    Article  CAS  Google Scholar 

  • Bernard O (2011) Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. J Process Control 21:1378–1389

    Article  CAS  Google Scholar 

  • Bernard O, Rémond B (2012) Validation of a simple model accounting for light and temperature effect on microalgal growth. Bioresour Technol 123:520–527

    Article  PubMed  CAS  Google Scholar 

  • Bitaubé E, Caro I, Pérez L (2008) Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor. Biochem Eng J 40:520–525

    Article  Google Scholar 

  • Blanchard GF, Guarini J, Richard P, Gros P, Mornet F (1996) Quantifying the short-term temperature effect on light-saturated photosynthesis of intertidal microphytobenthos. Mar Ecol Prog Ser 134:309–313

    Article  Google Scholar 

  • Brindley C, Acién FG, Fernández-Sevilla JM (2010) The oxygen evolution methodology affects photosynthetic rate measurements of microalgae in well-defined light regimes. Biotechnol Bioeng 106:228–237

    PubMed  CAS  Google Scholar 

  • Brindley C, Acién FG, Fernández-Sevilla JM (2011) Analysis of light regime in continuous light distributions in photobioreactors. Bioresour Technol 102:3138–3148

    Article  PubMed  CAS  Google Scholar 

  • Brune DE, Lundquist TJ, Benemann JR (2009) Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil fuels and animal feeds. J Environ Eng 135:1136–1144

    Article  CAS  Google Scholar 

  • Butterwick C, Heaney SI, Talling JF (2005) Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshw Biol 50:291–300

    Article  Google Scholar 

  • Camacho F, Acién FG, Sánchez JA, García F, Molina E (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62:71–86

    Article  PubMed  Google Scholar 

  • Camacho F, García F, Fernández JM, Chisti Y, Molina E (2003) A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng 81:459–473

    Article  PubMed  Google Scholar 

  • Carvalho AP, Silva SO, Baptista JM, Malcata FX (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89:1275–1288

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y (2010) A bioeconomy vision of sustainability. Biofuels Bioprod Bioref 4:359–361

    Article  CAS  Google Scholar 

  • Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215

    Article  Google Scholar 

  • Falkowski PG, Owens TG (1978) Effects of light intensity on photosynthesis and dark respiration in six species of marine phytoplankton. Mar Biol 45:289–295

    Article  CAS  Google Scholar 

  • Falkowski PG, Oliver MJ (2007) Mix and match: how climate selects phytoplankton. Nat Rev Microbiol 5:813–819

    Article  PubMed  CAS  Google Scholar 

  • Fernández I, Acién FG, Fernández JM, Guzmán JL, Magán JJ, Berenguel M (2012) Dynamic model of microalgal production in tubular photobioreactors. Bioresour Technol 126:172–181

    Article  PubMed  Google Scholar 

  • García JL, Berenguel M, Rodríguez F, Fernández JM, Brindley C, Acién FG (2003) Minimization of carbon losses in pilot-scale outdoor photobioreactors by model-based predictive control. Biotechnol Bioeng 84:533–543

    Article  Google Scholar 

  • Goldman JC, Azov Y, Riley CB, Dennett MR (1982a) The effect of pH in intensive microalgal cultures. I. Biomass regulation. J Exp Mar Biol Ecol 57:1–13

    Article  CAS  Google Scholar 

  • Goldman JC, Riley CB, Dennett MR (1982b) The effect of pH in intensive microalgal cultures. II. Species competition. J Exp Mar Biol Ecol 57:15–24

    Article  Google Scholar 

  • Gordon JM, Polle JEW (2007) Ultrahigh bioproductivity from algae. Appl Microbiol Biotechnol 76:969–975

    Article  PubMed  CAS  Google Scholar 

  • Han B (2001) Photosynthesis—irradiance response at physiological level: a mechanistic model. J Theor Biol 213:121–127

    Article  PubMed  CAS  Google Scholar 

  • Jeon YC, Cho CW, Yun Y (2006) Oxygen evolution rate of photosynthetic microalga Haematococcus pluvialis depending on light intensity and quality. Stud Surf Sci Catal 159:157–160

    Article  CAS  Google Scholar 

  • Jiménez C, Cossío BR, Niell FX (2003) Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield. Aquaculture 221:331–345

    Article  Google Scholar 

  • MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38

    Article  Google Scholar 

  • Marquez FJ, Sasaki K, Nishio N, Nagai S (1995) Inhibitory effect of oxygen accumulation on the growth of Spirulina platensis. Biotechnol Lett 17:225–228

    Article  CAS  Google Scholar 

  • Mazzuca T, Garcia F, Camacho F, Acién FG, Molina E (2000) Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnol Bioeng 67:465–475

    Article  Google Scholar 

  • Mendoz JL, Granados MR, deGodos I, Acién FG, Molina E, Heaven S, Banks CJ (2013) Oxygen transfer and evolution in microalgal culture in open raceways. Bioresour Technol 37:188–195

    Article  Google Scholar 

  • Moisan JR, Moisan TA, Abbott MR (2002) Modelling the effect of temperature on the maximum growth rates of phytoplankton populations. Ecol Model 153:197–215

    Article  Google Scholar 

  • Molina E, Fernández JM, Sánchez JA, García F (1996a) A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. J Biotechnol 45:59–69

    Article  Google Scholar 

  • Molina E, García F, Sánchez JA, Acién FG, Fernández JM (1996b) Growth yield determination in a chemostat culture of the marine microalga Isochrysis galbana. J Appl Phycol 8:529–534

    Article  Google Scholar 

  • Muñoz R, Köllner C, Guieysse B (2009) Biofilm photobioreactors for the treatment of industrial wastewaters. J Hazard Mater 161:29–34

    Article  PubMed  Google Scholar 

  • Nedbal L, Tichý V, Xiong F, Grobbelaar JU (1996) Microscopic green algae and cyanobacteria in high-frequency intermittent light. J Appl Phycol 8:325–333

    Article  CAS  Google Scholar 

  • Olaizola M, Duerr EO, Freeman DW (1991) Effect of CO2 enhancement in an outdoor algal production system using Tetraselmis. J Appl Phycol 3:363–366

    CAS  Google Scholar 

  • Papadakis IA, Kotzabasis K, Lika K (2005) A cell-based model for the photoacclimation and CO2-acclimation of the photosynthetic apparatus. Biochim Biophys Acta Bioenerg 1708:250–261

    Article  CAS  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  PubMed  CAS  Google Scholar 

  • Quinn JC, Catton KB, Johnson S, Bradley TH (2012) Geographical assessment of microalgae biofuels potential incorporating resource availability. Bioenergy Research 1–10

  • Sánchez JF, Fernández-Sevilla JM, Acién FG, Cerón MC, Pérez-Parra J, Molina-Grima E (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79:719–729

    Article  PubMed  Google Scholar 

  • Singh DP, Singh N, Verma K (1995) Photooxidative damage to the cyanobacterium Spirulina platensis mediated by singlet oxygen. Curr Microbiol 31:44–48

    Article  CAS  Google Scholar 

  • Slegers PM, van Beveren PJM, Wijffels RH, Van Straten G, Van Boxtel AJB (2013) Scenario analysis of large scale algae production in tubular photobioreactors. Appl Energy 105:395–406

    Article  Google Scholar 

  • Sousa C, de Winter L, Janssen M, Vermuë MH, Wijffels RH (2012) Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity. Bioresour Technol 104:565–570

    Article  PubMed  CAS  Google Scholar 

  • Takache H, Christophe G, Cornet J, Pruvost J (2010) Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors. Biotechnol Prog 26:431–440

    PubMed  CAS  Google Scholar 

  • Vejrazka C, Janssen M, Streefland M, Wijffels RH (2011) Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light. Biotechnol Bioeng 108:2905–2913

    Article  PubMed  CAS  Google Scholar 

  • Vonshak A, Abeliovich A, Boussiba S, Arad S, Richmond A (1982) Production of Spirulina biomass: effects of environmental factors and population density. Biomass 2:175–185

    Article  Google Scholar 

  • Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344

    Article  PubMed  CAS  Google Scholar 

  • Wigmosta MS, Coleman AM, Skaggs RJ, Huesemann MH, Lane LJ (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47:W00H04. doi:10.1029/2010WR009966

    Article  Google Scholar 

  • Yun Y, Park JM (2003) Kinetic modeling of the light-dependent photosynthetic activity of the green microalga Chlorella vulgaris. Biotechnol Bioeng 83:303–311

    Article  PubMed  CAS  Google Scholar 

  • Zijffers J-F, Schippers KJ, Zheng K, Janssen M, Tramper J, Wijffels RH (2010) Maximum photosynthetic yield of green microalgae in photobioreactors. Mar Biotechnol 12:708–718

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by the National Plan Project DPI2011-27818-C02-01 of the Spanish Ministry of Science and Innovation; as well as by FEDER funds, and by Project CENITVIDA in collaboration with AlgaEnergy, Fundación Cajamar and CDTI Ministry of Industry in Spain. Additionally, this paper is suported by the Sectorial Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the contract number SOP HRD/107/1.5/S/82514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gabriel Acién Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costache, T.A., Acién Fernández, F.G., Morales, M.M. et al. Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors. Appl Microbiol Biotechnol 97, 7627–7637 (2013). https://doi.org/10.1007/s00253-013-5035-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5035-2

Keywords

Navigation