Skip to main content

Advertisement

Log in

Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Development of sustainable technologies for the production of 3-hydroxypropionic acid (3HP) as a platform chemical has recently been gaining much attention owing to its versatility in applications for the synthesis of other specialty chemicals. Several proposed biological synthesis routes and strategies for producing 3HP from glucose and glycerol are reviewed presently. Ten proposed routes for 3HP production from glucose are described and one of which was recently constructed successfully in Escherichia coli with malonyl–Coenzyme A as a precursor. This resulted in a yield still far from the required level for industrial application. On the other hand, strategies employing engineered E. coli and Klebsiella pneumoniae capable of producing 3HP from glycerol are also evaluated. The titers produced by these recombinant strains reached around 3 %. At its current state, it is evident that a bulk of engineering works is yet to be done to acquire a biosynthesis route for 3HP that is acceptable for industrial-scale production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. From here on, all the Gibbs free energies mentioned in the text are calculated using the eQuilibrator online program (http://milolab.webfactional.com/) as described in the report by Flamholz et al. (2011).

References

  • Alber B, Olinger M, Reider A, Knockelkorn D, Jobst B, Hügler M, Fuchs G (2006) Malonyl–Coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp. J Bacteriol 188:8551–8559

    Article  CAS  Google Scholar 

  • Andreessen B, Lange AB, Robenek H, Steinbüchel A (2010) Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol 76:622–626

    Article  CAS  Google Scholar 

  • Ansede JH, Pellechia PJ, Yoch DC (1999) Metabolism of acrylate to β-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium, Alcaligenes faecalis M3A. Appl Environ Microbiol 65:5075–5081

    CAS  Google Scholar 

  • Ashok S, Raj SM, Rathnasingh C, Park S (2011) Development of recombinant Klebsiella pneumoniae ΔdhaT strain for the co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Appl Microbiol Biotechnol 90:1253–1265

    Article  CAS  Google Scholar 

  • Ashok S, Raj SM, Ko Y, Sankaranarayanan M, Zhou S, Kumar V, Park S (2013a) Effect of puuC overexpression and nitrate addition on glycerol metabolism an anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpK ΔdhaT. Metab Eng 15:10–24

    Article  CAS  Google Scholar 

  • Ashok S, Sankaranarayanan M, Ko Y, Jae K-E, Ainala SK, Kumar V, Park S (2013b) Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae ΔdhaTΔyqhD which can produce vitamin B12 naturally. Biotechnol Bioeng 110:511–524

    Article  CAS  Google Scholar 

  • Bar-Even A, Flamholz A, Noor E, Milo R (2012) Rethinking glycolysis: on biochemical logic of metabolic pathways. Nat Chem Biol 8:509–517

    Article  CAS  Google Scholar 

  • Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318:1782–1786

    Article  CAS  Google Scholar 

  • Brunk E, Neri M, Tavernelli I, Hatzimanikatis V, Rothlisberger U (2011) Integrating computational methods to retrofit enzymes to synthetic pathways. Biotech Bioeng 109:572–582

    Article  Google Scholar 

  • Buckel W (1996) Unusual dehydrations in anaerobic bacteria: considering ketyls (radical anions) as reactive intermediates in enzymatic reactions. FEBS Lett 389:20–24

    Article  CAS  Google Scholar 

  • Burk MJ, Osterhout RE (2010) Methods and organisms for production of 3-hydroxypropionic acid. USA Patent US 2010/0021978 A1

  • Cho A, Yun H, Park JH, Lee SY, Park S (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 4:35

    Article  Google Scholar 

  • Daniel R, Bobik TA, Gottschalk G (1999) Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes. FEMS Microbiol Rev 22:553–566

    Article  Google Scholar 

  • Della Pina C, Falletta E, Rossi M (2011) A green approach to chemical building blocks. The case of 3-hydroxypropionic acid. RSC Green Chem 13:1624–1632

    Article  CAS  Google Scholar 

  • Flamholz A, Noor E, Bar-Even A, Milo R (2011) eQuilibrator—the biochemical thermodynamics calculator. Nucleic Acids Res 40:D770–D775

    Article  Google Scholar 

  • Forage RG, Foster MA (1982) Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol diol dehydratases. J Bacteriol 149:413–419

    CAS  Google Scholar 

  • Fowler ZL, Gikandi WW, Koffas MA (2009) Increased malonyl–Coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavones production. Appl Environ Microbiol 75:5831–5839

    Article  CAS  Google Scholar 

  • Fukui T, Suzuki M, Tsuge T, Nakamura S (2009) Microbial synthesis of poly((R)-3-hydroxybutyrate-co-3-hydroxypropionate) from unrelated carbon sources by engineered Cupriavidus necator. Biomacromolecules 10:700–706

    Article  CAS  Google Scholar 

  • Gokarn RR, Selifona OV, Jessen H, Gort SJ, Selmer T, Buckel W (2002) 3-Hydroxypropionic acid and other organic compounds. US Patent WO 02/42418 A2

  • Haller T, Buckel T, Rétey J, Gerlt JA (2000) Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochem 39:4622–4629

    Article  CAS  Google Scholar 

  • Henry CS, Broadbelt LJ, Hatzimanikatis V (2010) Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol Bioeng 106:462–473

    CAS  Google Scholar 

  • Hetzel M, Brock M, Selmer T, Pierik AJ, Golding BT, Buckel W (2003) Acryloyl–CoA reductase from Clostridium propionicum, an enzyme complex of propionyl–CoA dehydrogenase and electron-transferring flavoprotein. Eur J Biochem 270:902–910

    Article  CAS  Google Scholar 

  • Holo H (1989) Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate. Arch Microbiol 151:252–256

    Article  CAS  Google Scholar 

  • Huang Y, Li Z, Shimizu K, Ye Q (2012) Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumoniae. Bioresour Technol 103:351–359

    Article  CAS  Google Scholar 

  • Hügler M, Menendez C, Schägger H, Fuchs G (2002) Malonyl–Coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Bacteriol 184:2404–2410

    Article  Google Scholar 

  • Hügler M, Huber H, Stetter KO, Fuchs G (2003a) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179:160–173

    Google Scholar 

  • Hügler M, Krieger RS, Jahn M, Fuchs G (2003b) Characterization of acetyl–CoA/propionyl–CoA carboxylase in Metallosphaera sedula. Eur J Biochem 270:736–744

    Article  Google Scholar 

  • Ishii M, Chuakrutt S, Arai H, Igarashi Y (2004) Occurrence, biochemistry and possible biotechnological application of the 3-hydroxypropionate cycle. Appl Microbiol Biotechnol 64:605–610

    Article  CAS  Google Scholar 

  • Jang Y-S, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park HG, Lee SY (2012) Bio-based production of C2-C6 platform chemicals. Biotechnol Bioeng 109:2437–2459

    Article  CAS  Google Scholar 

  • Jiang X, Meng X, Xian M (2009) Biosynthetic pathways for 3-hydroxypropionic acid production. Appl Microbiol Biotechnol 82:995–1003

    Article  CAS  Google Scholar 

  • Jo J, Raj SM, Rathnasingh C, Selvakumar E, Jung W-C, Park S (2008) Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-hydroxypropionaldehyde as a substrate. Appl Microbiol Biotechnol 81:51–60

    Article  CAS  Google Scholar 

  • Kern A, Tilley E, Hunter IS, Legiša M, Glieder A (2007) Engineering primary metabolic pathways of industrial microorganisms. J Biotechnol 129:6–29

    Article  CAS  Google Scholar 

  • Kim K-S, Pelton JG, Inwood WB, Andersen U, Kustu S, Wemmer DE (2010) The Rut pathway for pyrimidine degradation: novel chemistry and toxicity problems. J Bacteriol 192:4089–4102

    Article  CAS  Google Scholar 

  • Ko Y, Ashok S, Zhou S, Kumar V, Park S (2012) Aldehyde dehydrogenase activity is important to the production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae. Process Biochem 47:1135–1143

    Article  CAS  Google Scholar 

  • Kroeger JK, Zarzycki J, Fuchs G (2011) A spectrophotometric assay for measuring acetyl–Coenzyme A carboxylase. Anal Biochem 411:100–105

    Article  CAS  Google Scholar 

  • Kuchta RD, Abeles RH (1985) Lactate reduction in Clostridium propionicum, purification and properties of lactyl–CoA dehydratase. J Biol Chem 260:13181–13189

    CAS  Google Scholar 

  • Kumar V, Sankaranarayanan M, Jae K, Dugrapal M, Ashok S, Ko Y, Sarkar R, Park S (2012) Co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of recombinant Klebsiella pneumoniae J2B strain overexpressing aldehyde dehydrogenase. Appl Microbiol Biotechnol 96:373–383

    Article  CAS  Google Scholar 

  • Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nature Chem Biol 8:536–546

    Article  CAS  Google Scholar 

  • Liao HH, Gokarn RR, Gort SJ, Jessen HJ, Selifonova O (2003) Alanine 2,3-aminomutase. WO 03/062173

  • Liu H, Ramos KRM, Valdehuesa KNG, Nisola GM, Lee W-K, Chung W-J (2012a) Biosynthesis of ethylene glycol in Escherichia coli. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4618-7

  • Liu H, Valdehuesa KNG, Nisola GM, Ramos KRM, Chung W-J (2012b) High yield production of d-xylonic acid from D-xylose using engineered Escherichia coli. Bioresour Technol 115:244–248

    Article  CAS  Google Scholar 

  • Loh KD, Gyaneshwar P, Papadimiyriou EM, Fong R, Kim K-S, Parales R, Zhou WI, Kustu S (2006) A previously undescribed pathway for pyrimidine catabolism. Proc Natl Acad Sci 103:5114–5119

    Article  CAS  Google Scholar 

  • Luo LH, Seo J-W, Baek J-O, Oh B-R, Heo S-Y, Hong W-K, Kim D-H, Kim CH (2011a) Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol. Appl Microbiol Biotechnol 89:697–703

    Article  CAS  Google Scholar 

  • Luo LH, Seo J-W, Oh B-R, Seo P-S, Heo S-Y, Hong W-K, Kim D-H, Kim CH (2011b) Stimulation of reductive glycerol metabolism by overexpression of an aldehyde dehydrogenase in a recombinant Klebsiella pneumoniae strain defective in oxidative pathway. J Ind Microbiol Biotechnol 38:991–999

    Article  CAS  Google Scholar 

  • Luo LH, Kim CH, Heo S-Y, Oh B-R, Hong W-K, Kim S, Kim D-H, Seo J-W (2012) Production of 3-hydroxypropionic acid through propionaldehyde dehydrogenase PduP mediated biosynthetic pathway in Klebsiella pneumoniae. Bioresour Technol 103:1–6

    Article  CAS  Google Scholar 

  • Lynch MD (2011) Compositions and methods for 3-hydroxypropionate bio-production from biomass. USA Patent US 8,048,624 B1

  • Maervoet VE, Mey MD, Beauprez J, Maeseneire SD, Soetaert WK (2011) Enhancing the microbial conversion of glycerol to 1,3-propanediol using metabolic engineering. Org Process Res Dev 15:189–202

    Article  CAS  Google Scholar 

  • Malihan LB, Nisola GM, Chung W-J (2012) Brown algae hydrolysis in 1-n-butyl-3-methylimidazolium chloride with mineral acid catalyst system. Bioresour Technol 118:545–552

    Article  CAS  Google Scholar 

  • Menendez C, Bauer Z, Huber H, Gad’on N, Stetter KO, Fuchs G (1999) Presence of acetyl–CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. J Bacteriol 181:1088–1098

    CAS  Google Scholar 

  • O’Brien JR, Raynaud C, Croux C, Girbal L, Soucaille P, Lanzilotta WN (2004) Insight into the mechanism of the B12-independent glycerol dehydratase from Clostridium butyricum: preliminary biochemical and structural characterization. Biochem 43:4635–4645

    Article  Google Scholar 

  • Park SJ, Kim TW, Kim MK, Lee SY, Lim SC (2012) Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol Adv 30:1196–1206

    Article  CAS  Google Scholar 

  • Park SJ, Kim EY, Noh W, Park HM, Oh YH, Lee SH, Song BK, Jegal J, Lee SY (2013) Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab Eng 16:42–47

    Article  CAS  Google Scholar 

  • Raj SM, Rathnasingh C, Jo J-E, Park S (2008) Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Process Biochem 43:1440–1446

    Article  CAS  Google Scholar 

  • Raj SM, Rathnasingh C, Jung W-C, Park S (2009) Effect of process parameters on 3-hydroxypropionic acid production from glycerol using recombinant Escherichia coli. Appl Microbiol Biotechnol 84:649–657

    Article  Google Scholar 

  • Raj SM, Rathnasingh C, Jung W-C, Selvakumar E, Park S (2010) A novel NAD+-dependent aldehyde dehydrogenase encoded by the puuC gene of Klebsiella pneumoniae DSM 2026 that utilizes 3-hydroxypropionaldehyde as a substrate. Biotechnol Bioproc Eng 15:131–138

    Article  CAS  Google Scholar 

  • Rathnasingh C, Raj SM, Jo J-E, Park S (2009) Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol Bioeng 104:729–739

    CAS  Google Scholar 

  • Rathnasingh C, Raj SM, Lee Y, Catherine C, Ashok S, Park S (2012) Production of 3-hydroxypropionic acid via malonyl–CoA pathway using recombinant Escherichia coli strains. J Biotechnol 157:633–640

    Article  CAS  Google Scholar 

  • Raynaud C, Sarcabal P, Meynial-Salles I, Croux C, Soucaille P (2003) Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum. Proc Natl Acad Sci 100:5010–5015

    Article  CAS  Google Scholar 

  • Sato K, Nishina Y, Setoyama C, Miura R, Shiga K (1999) Unusually high standard redox potential of acrylyl–CoA/propionyl–CoA couple among enoyl–CoA/acyl–CoA couples: a reason for the distinct metabolic pathway of propionyl–CoA from longer acyl–CoAs. J Biochem 126:668–675

    Article  CAS  Google Scholar 

  • Saxena RC, Adhikari DK, Goyal HB (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sustain Energ Rev 13:167–178

    Article  Google Scholar 

  • Schnackerz KD, Andersen G, Dobritzsch D, Piskur J (2008) Degradation of pyrimidines in Saccharomyces kluyveri: transamination of β-alanine. Nucleos Nucleot Nucleic Acid 27:794–799

    Article  CAS  Google Scholar 

  • Strauss G, Eisenreich W, Bacher A, Fuchs G (1992) 13C-NMR study of autotrophic CO2 fixation pathways in the sulfur-reducing Achaebacterium Thermoproteus neutrophilus and in the phototrophic Eubacterium Chloroflexus aurantiacus. Eur J Biochem 205:853–866

    Article  CAS  Google Scholar 

  • Takamura Y, Nomura G (1988) Changes in the intracellular concentration of acetyl–CoA and malonyl–CoA in relation to the carbon and energy metabolism of Escherichia coli K12. J General Microbiol 134:2249–2253

    CAS  Google Scholar 

  • Tang X, Tan Y, Zhu H, Zhao K, Shen W (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol 75:1628–1634

    Article  CAS  Google Scholar 

  • Teufel R, Kung JW, Kockelkorn D, Alber BE, Fuchs G (2009) 3-Hydroxypropionyl–Coenzyme A dehydratase and acryloyl–Coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in Sulfolobales. J Bacteriol 191:4572–4581

    Article  CAS  Google Scholar 

  • Tobimatsu T, Kajiura H, Yunoki M, Azuma M, Toraya T (1999) Identification and expression of the genes encoding a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase. J Bacteriol 181:4110–4113

    CAS  Google Scholar 

  • Toraya T, Mori K (1999) A reactivating factor for coenzyme B12-dependent diol dehydratase. J Biol Chem 274:3372–3377

    Article  CAS  Google Scholar 

  • Toraya T, Shirakashi T, Kosuga T, Fukui S (1976) Substrate specificity of coenzyme B12-dependent diol dehydratase: glycerol as both a good substrate and a potent inactivator. Biochem Biophys Res Commun 69:475–480

    Article  CAS  Google Scholar 

  • Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetic and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320:217–234

    Article  CAS  Google Scholar 

  • Wang Q, Liu C, Mo X, Zhang Y, Zhao G (2012) Biosynthetic pathway for poly(3-hydroxypropionate) in recombinant Escherichia coli. J Microbiol 50:693–697

    Article  CAS  Google Scholar 

  • Werpy, T., Holladay, J., White, J., 2004. Top value added chemicals from biomass, PNNL-14808, Pac. Northw. Nat. Lab., Richland, WA, http://www1.eere.energy.gov/biomass/pdfs/35523.pdf

  • Xu P, Ranganathan S, Fowler ZL, Maranas CD, Koffas MAG (2011) Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl–CoA. Metab Eng 13:578–587

    Article  CAS  Google Scholar 

  • Yuzawa S, Chiba N, Katz L, Keasling JD (2012) Construction of a part of a 3-hydroxypropionate cycle for heterologous polyketide biosynthesis in Escherichia coli. Biochem 51:9779–9781

    Article  CAS  Google Scholar 

  • Zarzycki J, Brecht V, Müller M, Fuchs G (2009) Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc Natl Acad Sci 106:21317–21322

    Article  CAS  Google Scholar 

  • Zhang H, Boghigian BA, Pfeifer BA (2010) Investigating the role of native propionyl–CoA and methylmalonyl–CoA metabolism on heterologous polyketide production in Escherichia coli. Biotechnol Bioeng 105:567–573

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (MEST) (2012-0006693) and the Technology Development Program to Solve Climate Changes (Systems Metabolic Engineering for Biorefineries) from the MEST through the NRF (NRF-2012-C1AAA001-2012M1A2A2026556).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung Hwan Lee or Si Jae Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdehuesa, K.N.G., Liu, H., Nisola, G.M. et al. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical. Appl Microbiol Biotechnol 97, 3309–3321 (2013). https://doi.org/10.1007/s00253-013-4802-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4802-4

Keywords

Navigation