Skip to main content
Log in

Biostimulation by methanol enables the methylotrophic yeasts Hansenula polymorpha and Trichosporon sp. to reveal high formaldehyde biodegradation potential as well as to adapt to this toxic pollutant

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The methylotrophic yeasts Hansenula polymorpha and Trichosporon sp. revealed enhanced biodegradation capability of exogenously applied formaldehyde (Fd) upon biostimulation achieved by the presence of methanol, as compared to glucose. Upon growth on either of the above substrates, the strains proved to produce the activity of glutathione-dependent formaldehyde dehydrogenase—the enzyme known to control the biooxidative step of Fd detoxification. However, in the absence of methanol, the yeasts’ tolerance to Fd was decreased, and the elevated sensitivity was especially pronounced for Trichosporon sp. Both strains responded to the methanol and/or Fd treatment by increasing their unsaturation index (UI) at xenobiotic levels below minimal inhibitory concentrations. This indicated that the UI changes effected from the de novo synthesis of (poly) unsaturated fatty acids carried out by viable cells. It is concluded that the yeast cell response to Fd intoxication involves stress reaction at the level of membranes. Fluidization of the lipid bilayer as promoted by methanol is suggested as a significant adaptive mechanism increasing the overall fitness enabling to cope with the formaldehyde xenobiotic via biodegradative pathway of C1-compound metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexandre H, Rousseaux I, Charpentier C (1994) Relationship between ethanol tolerance, lipid composition, and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol Lett 124:17–22

    Article  CAS  Google Scholar 

  • Anamnart S, Tolstorukov I, Kaneko Y, Harashima S (1998) Fatty acid desaturation in methylotrophic yeast Hansenula polymorpha strain CBS1976 and unsaturated fatty acid auxotrophic mutants. J Ferment Bioeng 85:476–482

    Article  CAS  Google Scholar 

  • Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S (2009) Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet 50:301–310

    Article  CAS  Google Scholar 

  • Baerends RJS, Sulter GJ, Jeffries TW, Cregg JM, Veenhuis M (2002) Molecular characterization of the Hansenula polymorpha FLD1 gene encoding formaldehyde dehydrogenase. Yeast 19:37–42

    Article  CAS  Google Scholar 

  • Baerends RJS, de Hulster E, Geertman J-M A, Daran J-M, van Maris AJA, Veenhuis M, van der Klei IJ, Pronk JT (2008) Engineering and analysis of a Saccharomyces cerevisiae strain that uses formaldehyde as an auxiliary substrate. Appl Environ Microbiol 74:3182–3188

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantisation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cialfi S, Uccelletti D, Carducci A, Wesolowski-Louvel M, Mancini P, Heipieper HJ, Saliola M (2011) KlHsl1 is a component of glycerol response pathways in the milk yeast Kluyveromyces lactis. Microbiology SGM 157:1509–1518

    Article  CAS  Google Scholar 

  • Denich TJ, Beaudette LA, Lee H, Trevors JT (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 52:149–182

    Article  CAS  Google Scholar 

  • Glancer-Soljan M, Soljan V, Dragicevic TL, Cacic L (2001) Aerobic degradation of formaldehyde in wastewater from the production of melamine resins. Food Technol Biotechnol 39:197–202

    CAS  Google Scholar 

  • Gleeson MA, Sudbery PE (1988) The methylotrophic yeasts. Yeast 4:1–15

    Article  CAS  Google Scholar 

  • Gonchar MV, Titorenko VI, Gladarevskaya NN, Sibirny AA (1990) The phenomenon of the medium acidification by methylotrophic yeast cells and its biochemical nature. Biochem Mosc 55:2148–2157

    CAS  Google Scholar 

  • Gonchar M, Maidan M, Korpan Y, Sibirny V, Kotylak Z, Sibirny A (2002) Metabolically engineered methylotrophic yeast cells and enzymes as sensor biorecognition elements. FEMS Yeast Res 2:307–314

    CAS  Google Scholar 

  • Hartner FS, Glieder A (2006) Regulation of methanol utilization pathway genes in yeasts. Microbial Cell Fact 5:39. doi:10.1186/1475-2859-5-39

    Article  Google Scholar 

  • Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852

    CAS  Google Scholar 

  • Heipieper HJ, Isken S, Saliola M (2000) Ethanol tolerance and membrane fatty acid adaptation in adh multiple and null mutants of Kluyveromyces lactis. Res Microbiol 151:777–784

    Article  CAS  Google Scholar 

  • Heipieper HJ, Meulenbeld G, van Oirschot Q, de Bont JAM (1996) Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in Pseudomonas putida S12. Appl Environ Microbiol 62:2773–2777

    CAS  Google Scholar 

  • Heipieper HJ, de Bont JA (1994) Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl Environ Microbiol 60:4440–4444

    CAS  Google Scholar 

  • Jones RP, Greenfield PF (1987) Ethanol and the fluidity of the yeast plasma membrane. Yeast 3:223–232

    Article  CAS  Google Scholar 

  • Kaszycki P, Czechowska K, Petryszak P, Międzobrodzki J, Pawlik B, Kołoczek H (2006) Methylotrophic extremophilic yeast Trichosporon sp: a soil-derived isolate with potential applications in environmental biotechnology. Acta Biochim Polon 53:463–473

    CAS  Google Scholar 

  • Kaszycki P, Kołoczek H (2000) Formaldehyde and methanol biodegradation with the methylotrophic yeast Hansenula polymorpha in a model wastewater system. Microbiol Res 154:289–296

    Article  CAS  Google Scholar 

  • Kaszycki P, Tyszka M, Malec P, Kołoczek H (2001) Formaldehyde and methanol biodegradation with methylotrophic yeast Hansenula polymorpha. An application to real wastewater treatment. Biodegradation 12:169–177

    Article  CAS  Google Scholar 

  • Kato N, Miyawaki N, Sakazawa C (1982) Oxidation of formaldehyde by resistant strains Debaryomyces vanriji and Trichosporon penicillatum. Agric Biol Chem 46:655–661

    Article  CAS  Google Scholar 

  • Khlupova M, Kuznetsov B, Demkiv O, Gonchar M, Csöregi E, Shleev S (2007) Intact and permeabilized cells of the yeast Hansenula polymorpha as bioselective elements for amperometric assay of formaldehyde. Talanta 71:934–940

    Article  CAS  Google Scholar 

  • Kim IS, Lee H, Trevors JT (2001) Effects of 2,2',5,5'-tetrachlorobiphenyl and biphenyl on cell membranes of Ralstonia eutropha H850. FEMS Microbiol Lett 200:17–24

    CAS  Google Scholar 

  • Koukou AI, Tsoukatos D, Drainas C (1990) Effect of ethanol on the phospholipid and fatty acid content of Schizosacharomyces pombe. Adv Microbial Physiol 25:1271–1277

    Google Scholar 

  • Lee B, Yurimoto H, Sakai Y, Kato N (2002) Physiological role of the glutathione dependent formaldehyde dehydrogenase in the methylotrophic yeast Candida boidinii. Microbiology 148:2697–2704

    CAS  Google Scholar 

  • Löffler C, Eberlein C, Mäusezahl I, Kappelmeyer U, Heipieper HJ (2010) Physiological evidence for the presence of a cis-trans isomerase of unsaturated fatty acids in Methylococcus capsulatus bath to adapt to the presence of toxic organic compounds. FEMS Microbiol Lett 308:68–75

    Article  Google Scholar 

  • Lu S-F, Tolstrukov II, Anamart S, Kaneko Y, Harashima S (2000) Cloning, sequencing, and functional analysis of H-OLE1 gene encoding ∆9-fatty acid desaturase in Hansenula polymorpha. Appl Microbiol Biotechnol 54:499–509

    Article  CAS  Google Scholar 

  • Martin CE, Oh C-S, Kandasamy P, Chellapa R, Vemula M (2002) Yeast desaturases. Biochem Soc Trans 30:1080–1082

    Article  CAS  Google Scholar 

  • Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608

    CAS  Google Scholar 

  • Murdanoto AP, Sakai Y, Konishi T, Yasuda F, Tani Y, Kato N (1997) Purification and properties of methyl formate synthase, a mitochondrial alcohol dehydrogenase, participating in formaldehyde oxidation in methylotrophic yeasts. Appl Environ Microbiol 63:1715–1720

    CAS  Google Scholar 

  • Mykytczuk NC, Trevors JT, Leduc LG, Ferroni GD (2007) Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Biol 95:60–82

    Article  CAS  Google Scholar 

  • Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416–421

    CAS  Google Scholar 

  • Rakpuang W (2009) Growth temperatures and various concentrations of ricinoleic acid affect fatty acid composition in two strains of Hansenula polymorpha. Pak J Biol Sci 12:986–990

    Article  CAS  Google Scholar 

  • Rodríguez-Vargas S, Sánchez-García A, Martínez-Rivas JM, Prieto JA, Randez-Gil F (2007) Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl Environ Microbiol 73:110–116

    Article  Google Scholar 

  • Sakai Y, Murdanoto AP, Sembiring L, Tani Y, Kato N (1995) A novel formaldehyde oxidation pathway in methylotrophic yeasts: Methylformate as a possible intermediate. FEMS Microbiol Lett 127:229–234

    Article  CAS  Google Scholar 

  • Sasnauskas K, Jomantiene R, Januska A, Lebediene E, Lebedys J, Janulaitis A (1992) Cloning and analysis of a Candida maltosa gene which confers resistance to formaldehyde in Saccharomyces cerevisiae. Gene 122:207–211

    Article  CAS  Google Scholar 

  • Schneiter R, Daum G (2006) Extraction of yeast lipids. Methods Mol Biol 313:41–46

    CAS  Google Scholar 

  • Sibirny AA, Titorenko VI, Gonchar MV, Ubiyvovk VM, Ksheminskaya GP, Vitvitskaya OP (1988) Genetic control of methanol utilization in yeasts. J Basic Microbiol 28:293–319

    Article  CAS  Google Scholar 

  • Sigawi S, Smutok O, Demkiv O, Zakalska O, Gayda G, Nitzan Y, Nisnevitch M, Gonchar M (2011) Immobilized formaldehyde-metabolizing enzymes from Hansenula polymorpha for removal and control of airborne formaldehyde. J Biotechnol 153:138–144

    Article  CAS  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525

    Article  CAS  Google Scholar 

  • van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M (2006) The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim Biophys Acta 1763:1453–1462

    Article  Google Scholar 

  • van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN (1995) The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev 59:304–322

    Google Scholar 

  • van Zutphen T, Baerends RJS, Susanna KA, de Jong A, Kuipers OP, Veenhuis M, van der Klei IJ (2010) Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC Genomics 11:1. doi:10.1186/1471-2164-11-1

    Article  Google Scholar 

  • Viegas CA, Cabral MG, Teixeira MC, Neumann G, Heipieper HJ, Sá-Correia I (2005) Yeast adaptation to 2,4-dichlorophenoxyacetic acid involves increased membrane fatty acid saturation degree and decreased OLE1 transcription. Biochem Biophys Res Commun 330:271–278

    Article  CAS  Google Scholar 

  • Walker GM (2000) Yeast physiology and biotechnology, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  • Weber FJ, de Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvent on membranes. Biochim Biophys Acta 1286:225–245

    Article  CAS  Google Scholar 

  • Yurimoto H, Kato N, Sakai Y (2005) Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. Chem Rec 5:367–375

    Article  CAS  Google Scholar 

  • Yurimoto H, Oku M, Sakai Y (2011) Yeast methylotrophy: Metabolism, gene regulation and peroxisome homeostasis. Int J Microbiol 2011:101298. doi:10.1155/2011/101298

    Google Scholar 

  • Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99:7881–7885

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the European Commission within its Seventh Framework Program Project BACSIN (Contract no. 211684). This work contributed to the CITE Research Programme of the Helmholtz Centre for Environmental Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann J. Heipieper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaszycki, P., Walski, T., Hachicho, N. et al. Biostimulation by methanol enables the methylotrophic yeasts Hansenula polymorpha and Trichosporon sp. to reveal high formaldehyde biodegradation potential as well as to adapt to this toxic pollutant. Appl Microbiol Biotechnol 97, 5555–5564 (2013). https://doi.org/10.1007/s00253-013-4796-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4796-y

Keywords

Navigation