Skip to main content

Advertisement

Log in

Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial production of ethanol might be a potential route to replace oil and chemical feedstocks. Bioethanol is by far the most common biofuel in use worldwide. Lignocellulosic biomass is the most promising renewable resource for fuel bioethanol production. Bioconversion of lignocellulosics to ethanol consists of four major unit operations: pretreatment, hydrolysis, fermentation, and product separation/distillation. Conventional bioethanol processes for lignocellulosics apply commercial fungal cellulase enzymes for biomass hydrolysis, followed by yeast fermentation of resulting glucose to ethanol. The fungus Neurospora crassa has been used extensively for genetic, biochemical, and molecular studies as a model organism. However, the strain's potential in biotechnological applications has not been widely investigated and discussed. The fungus N. crassa has the ability to synthesize and secrete all three enzyme types involved in cellulose hydrolysis as well as various enzymes for hemicellulose degradation. In addition, N. crassa has been reported to convert to ethanol hexose and pentose sugars, cellulose polymers, and agro-industrial residues. The combination of these characteristics makes N. crassa a promising alternative candidate for biotechnological production of ethanol from renewable resources. This review consists of an overview of the ethanol process from lignocellulosic biomass, followed by cellulases and hemicellulases production, ethanol fermentations of sugars and lignocellulosics, and industrial application potential of N. crassa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agarwal AK (2008) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust 33:233–271

    Article  CAS  Google Scholar 

  • Almeida JR, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  • Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Lidén G (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82(4):625–638

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  Google Scholar 

  • Bae B, Sullivan RP, Zhao H, Nair SK (2010) Structure and engineering of L-arabinitol 4-dehydrogenase from Neurospora crassa. J Mol Biol 402:230–240

    Article  CAS  Google Scholar 

  • Baker CL, Loros JJ, Dunlap JC (2012) The circadian clock of Neurospora crassa. FEMS Microbiol Rev 36(1):95–110

    Article  CAS  Google Scholar 

  • Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust 34(5):551–573

    Article  CAS  Google Scholar 

  • Banerjee N, Bhatnagar R, Viswanathan L (1981) Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 11:226–228

    Article  CAS  Google Scholar 

  • Beckner M, Ivey ML, Phister TG (2011) Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 53:387–394

    Article  CAS  Google Scholar 

  • Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesovsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff CP, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis RH, Ebbole DJ, Zelter A, Kalkman ER, O’Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt RJ (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108

    Article  CAS  Google Scholar 

  • Cardona CA, Sánchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98(12):2415–2457

    Article  CAS  Google Scholar 

  • Catalanotto C, Nolan T, Cogoni C (2006) Homology effects in Neurospora crassa. FEMS Microbiol Lett 254(2):182–189

    Article  CAS  Google Scholar 

  • Chambergo FS, Bonaccorsi ED, Ferreira AJ, Junior JR, Abrahao-Neto J, Farah JP, El-Dorry H (2002) Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarray. J Biol Chem 277:13983–13988

    Article  CAS  Google Scholar 

  • Chandel AK, Chan ES, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2(1):14–32

    Google Scholar 

  • Chandel AK, Chandrasekhar G, Radhika K, Ravinder R, Ravindra P (2011) Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnol Mol Biol Rev 6(1):008–020

    CAS  Google Scholar 

  • Chandrakant P, Bisaria VS (1998) Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 18:295–331

    Article  CAS  Google Scholar 

  • Chen CH, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ (2009) Genome-wide analysis of light-inducible responses reveals hierarchical light signaling in Neurospora. EMBO J 28(8):1029–1042

    Article  CAS  Google Scholar 

  • Chiang C, Knight SG (1960) A new pathway of pentose metabolism. Biochem Biophys Res Commun 3:554–559

    Article  CAS  Google Scholar 

  • Colvin HJ, Sauer BL, Munkres KD (1973) Glucose utilization and ethanolic fermentation by wild type and extrachromosomal mutants of Neurospora crassa. J Bacteriol 116(3):1322–1328

    CAS  Google Scholar 

  • Couto SR, Sanromán MA (2005) Application of solid-state fermentation to ligninolytic enzyme production. Biochem Eng J 22:211–219

    Article  CAS  Google Scholar 

  • Crepin VF, Faulds CB, Connerton IF (2003) A non-modular type B feruloyl esterase from Neurospora crassa exhibits concentration-dependent substrate inhibition. Biochem J 370:417–427

    Article  CAS  Google Scholar 

  • Crepin VF, Faulds CB, Connerton IF (2004) Identification of a type-D feruloyl esterase from Neurospora crassa. Appl Microbiol Biotechnol 63:567–570

    Article  CAS  Google Scholar 

  • Crosthwaite SK, Heintzen C (2010) Detection and response of the Neurospora crassa circadian clock to light and temperature. Fungal Biol Rev 24(3–4):114–122

    Article  Google Scholar 

  • Davis RH (2000) Neurospora: contributions of a model organism. Oxford University Press, New York

    Google Scholar 

  • Davis RH, Perkins DD (2002) Neurospora: a model of model microbes. Nat Rev Genet 3:397–403

    Article  CAS  Google Scholar 

  • Demain AL (2009) Biosolutions to the energy problem. J Ind Microbiol Biotechnol 36:319–332

    Article  CAS  Google Scholar 

  • Deshpande V, Keskar S, Mishra C, Rao M (1986) Direct conversion of cellulose/hemicellulose to ethanol by Neurospora crassa. Enzyme Microb Technol 8(3):149–152

    Article  CAS  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  Google Scholar 

  • Dogaris I, Karapati S, Mamma D, Kalogeris E, Kekos D (2009a) Hydrothermal processing and enzymatic hydrolysis of sorghum bagasse for fermentable carbohydrates production. Bioresour Technol 100(24):6543–6549

    Article  CAS  Google Scholar 

  • Dogaris I, Vakontios G, Kalogeris E, Mamma D, Kekos D (2009b) Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Ind Crop Prod 29(2–3):404–411

    Article  CAS  Google Scholar 

  • Dogaris I, Gkounta O, Mamma D, Kekos D (2012) Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa. Appl Microbiol Biotechnol 95(2):541–550

    Article  CAS  Google Scholar 

  • Dunlap JC, Borkovich KA, Henn MR, Turner GE, Sachs MS, Glass NL, McCluskey K, Plamann M, Galagan JE, Birren BW, Weiss RL, Townsend JP, Loros JJ, Nelson MA, Lambreghts R, Colot HV, Park G, Collopy P, Ringelberg C, Crew C, Litvinkova L, DeCaprio D, Hood HM, Curilla S, Shi M, Crawford M, Koerhsen M, Montgomery P, Larson L, Pearson M, Kasuga T, Tian C, Baştürkmen M, Altamirano L, Xu J (2007) Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. Adv Genet 57:49–96

    Google Scholar 

  • Eberhart BM, Beck RS (1970) Localization of the β-glucosidases in Neurospora crassa. J Bacteriol 101:408–417

    CAS  Google Scholar 

  • Eberhart BM, Beck RS (1973) Induction of β-glucosidase in Neurospora crassa. J Bacteriol 116:295–303

    CAS  Google Scholar 

  • Eberhart BM, Cross DF, Chase LR (1964) β-Glucosidase system of Neurospora crassa. I. β-Glucosidase and cellulase activities of mutant and wildtype strains. J Bacteriol 87:761–770

    CAS  Google Scholar 

  • Eberhart BM, Beck RS, Goolsby KM (1977) Cellulase of Neurospora crassa. J Bacteriol 130:181–186

    CAS  Google Scholar 

  • Eilers FI, Sussman AS (1970) Conversion of furfural to furoic acid and furfuryl alcohol by Neurospora ascospores. Planta (Berl) 94:253–264

    Article  CAS  Google Scholar 

  • Eklund H, Ramaswamy S (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: three-dimensional structures of MDR alcohol dehydrogenases. Cell Mol Life Sci 65:3907–3917

    Article  CAS  Google Scholar 

  • Festel GW (2008) Biofuels—economic aspects. Chem Eng Technol 31(5):715–720

    Article  CAS  Google Scholar 

  • Flavell RB, Fincham JRS (1968) Acetate-nonutilizing mutants of Neurospora crassa. II. Biochemical deficiencies and the roles of certain enzymes. J Bacteriol 95:1063–1068

    CAS  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang SG, Nielsen CB, Butler J, Endrizzi M, Qui DY, Ianakiev P, Pedersen DB, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stabge-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li WX, Pratt RJ, Osmani SA, DeSouza CPC, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seller S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  CAS  Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10(2):141–146

    Article  CAS  Google Scholar 

  • Griffen DH (1994) Fungal physiology, 2nd edn. Wiley-Liss Inc., New York

    Google Scholar 

  • Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R (2007) Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97:1028–1038

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Linden T, Senac T, Skoog K (1991) Ethanolic fermentation of pentoses in lignocellulose hydrolyzates. Appl Biochem Biotechnol 28(29):131–144

    Article  Google Scholar 

  • Hahn-Hägerdal B, Jeppsson H, Skoog K, Prior BA (1994) Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb Technol 16:933–943

    Article  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bioethanol-the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  CAS  Google Scholar 

  • Howell N, Zuiches CA, Munkres KD (1971) Mitochondrial biogenesis in Neurospora crassa. I. An ultrastructural and biochemical investigation of the effects of anaerobiosis and chloramphenicol inhibition. J Cell Biol 50:721–736

    Article  CAS  Google Scholar 

  • Jennings DH (1984) Polyol metabolism in fungi. Adv Microb Physiol 25:149–193

    Article  CAS  Google Scholar 

  • Johnson HN, DeBusk A (1970a) The beta-galactosidase system of Neurospora crassa. I. Purification and properties of the pH 4.2 enzyme. Arch Biochem Biophys 138(2):408–411

    Article  CAS  Google Scholar 

  • Johnson HN, DeBusk A (1970b) The beta-galactosidase system of Neurospora crassa. II. Extracellular nature of the pH 4.2 enzyme. Arch Biochem Biophys 138(2):412–417

    Article  CAS  Google Scholar 

  • Junker B, Lester M, Leporati J, Schmitt J, Kovatch M, Borysewicz S, Maciejak W, Seeley A, Hesse M, Connors N, Brix T, Creveling E, Salmon P (2006) Sustainable reduction of bioreactor contamination in an industrial fermentation pilot plant. J Biosci Bioeng 102(4):251–268

    Article  CAS  Google Scholar 

  • Kobr MJ, Bianchi DE, Oulevey N, Turian G (1967) The effect of oxygen tension on growth, conidiation, and alcohol production of Neurospora crassa. Can J Microbiol 13:805–817

    Article  CAS  Google Scholar 

  • Koh LP, Ghazoul J (2008) Biofuels, biodiversity, and people: understanding the conflicts and finding opportunities. Biol Conserv 141:2450–2460

    Article  Google Scholar 

  • Kritsky MS, Belozerskaya TA, Sokolovsky VY, Filippovich SY (2005) Photoreceptor apparatus of the fungus Neurospora crassa. Mol Biol 39(4):514–528

    Article  CAS  Google Scholar 

  • Kubicek CP, Messner R, Gruber F, Mach RL, Kubicek-Pranz EM (1993) The Trichoderma cellulase regulatory puzzle: from the interior life of a secretory fungus. Enzyme Microb Technol 15:90–99

    Article  CAS  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391

    Article  CAS  Google Scholar 

  • Landman OE (1954) Neurospora lactase. II. Enzyme formation in the standard strain. Arch Biochem Biophys 52(1):93–109

    Article  CAS  Google Scholar 

  • Landman OE, Bonner DM (1952) Neurospora lactase. I: Properties of lactase preparations from a lactose utilizing and a lactose non-utilizing strain. Arch Biochem Biophys 41(2):253–265

    Article  CAS  Google Scholar 

  • Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24

    Article  CAS  Google Scholar 

  • Lee J-S, Parameswaran B, Lee J-P, Park S-C (2008) Recent developments of key technologies on cellulosic ethanol production. J Sci Ind Res 67:865–873

    CAS  Google Scholar 

  • Li ZJ, Shukla V, Fordyce AP, Pedersen AG, Wenger KS, Marten MR (2000) Fungal morphology and fragmentation behavior in a fed-batch Aspergillus oryzae fermentation at the production scale. Biotechnol Bioeng 70:300–312

    Article  CAS  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  CAS  Google Scholar 

  • Luke AK, Burton SG (2001) A novel application for Neurospora crassa: progress from batch culture to a membrane bioreactor for the bioremediation of phenols. Enzyme Microb Technol 29:348–356

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  Google Scholar 

  • Macris BJ, Kekos D, Evangelidou X, Galiotou-Panayotou M, Rodis P (1987) Solid state fermentation of straw with Neurospora crassa for CMCase and β-glucosidase production. Biotechnol Lett 9(9):661–664

    Article  CAS  Google Scholar 

  • Macris BJ, Kekos D, Evangelidou X (1989) A simple and inexpensive method for cellulase and beta-glucosidase production by Neurospora crassa (Short Contribution). Appl Microbiol Biotechnol 31:150–151

    Article  CAS  Google Scholar 

  • Mahadevan PR, Eberhart BM (1964) The beta-glucosidase system of Neurospora crassa. II. Purification and characterization of aryl beta-glucosidase. Arch Biochem Biophys 108:22–29

    Article  CAS  Google Scholar 

  • Maheshwari R (1999) Microconidia of Neurospora crassa. Fungal Genet Biol 26:1–18

    Article  CAS  Google Scholar 

  • Mamma D, Kourtoglou E, Christakopoulos P (2008) Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour Technol 99(7):2373–2383

    Article  CAS  Google Scholar 

  • Mannhaupt G, Montrone C, Haase D, Mewes HW, Aign V, Hoheisel JD, Fartmann B, Nyakatura G, Kempken F, Maier J, Schulte U (2003) What's in the genome of a filamentous fungus? Analysis of the Neurospora genome sequence. Nucleic Acids Res 31:1944–1954

    Article  CAS  Google Scholar 

  • Margeot A, Hahn-Hägerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380

    Article  CAS  Google Scholar 

  • Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53

    Article  CAS  Google Scholar 

  • Mcneil B, Harvey LM (1993) Viscous fermentation products. Crit Rev Biotechnol 13:275–304

    Article  CAS  Google Scholar 

  • Mishra C, Keskar S, Rao M (1984) Production and properties of extracellular endoxylanase from Neurospora crassa. Appl Environ Microbiol 48:224–228

    CAS  Google Scholar 

  • Modig T, Lidén G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363:769–776

    Article  CAS  Google Scholar 

  • Moo-Young M, Halard B, Allen G, Burrell R, Kawase Y (1987) Oxygen transfer to mycelial fermentation broths in an airlift fermentor. Biotechnol Bioeng 30:746–753

    Article  CAS  Google Scholar 

  • Myers MG, Eberhart B (1966) Regulation of cellulase and cellobiase in Neurospora crassa. Biochem Biophys Res Commun 24(5):782–785

    Article  CAS  Google Scholar 

  • Nair N, Zhao H (2007) Biochemical characterization of an L-xylulose reductase from Neurospora crassa. Appl Environ Microbiol 73(6):2001–2004

    Article  CAS  Google Scholar 

  • Norton S, D'Amore T (1994) Physiological effects of yeast cell immobilization: application for brewing. Enzyme Microb Technol 16:365–375

    Article  CAS  Google Scholar 

  • Okonko IO, Adeola OT, Aloysius FE, Damilola AO, Adewale OA (2009) Utilization of food wastes for sustainable development. Electron J Environ Agric Food Chem 8(4):263–286

    CAS  Google Scholar 

  • Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuel 1:7. doi:10.1186/1754-6834-1-7 (http://www.biotechnologyforbiofuels.com/content/1/1/7)

  • Olsvik E, Kristiansen B (1994) Rheology of filamentous fermentations. Biotechnol Adv 12:1–39

    Article  CAS  Google Scholar 

  • Palmqvist E, Almeida JS, Hahn-Hägerdal B (1999) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng 62:447–454

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  • Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259

    Article  CAS  Google Scholar 

  • Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31(1):20–31

    Article  CAS  Google Scholar 

  • Perkins DD (1992) Neurospora: the organism behind the molecular revolution. Genetics 130:687–701

    CAS  Google Scholar 

  • Perkins DD, Davis RH (2000) Neurospora at the millennium. Fungal Genet Biol 31:153–167

    Article  CAS  Google Scholar 

  • Perkins DD, Turner BC (1988) Neurospora from natural populations: toward the population biology of a haploid eukaryote. Exp Mycol 12:91–131

    Article  Google Scholar 

  • Perkins DD, Turner BC, Barry EG (1976) Strains of Neurospora collected from nature. Evolution 30:281–313

    Article  Google Scholar 

  • Perlman D (1950a) Observations on the production of ethanol by fungi and yeasts. Am J Bot 37:237–241

    Article  CAS  Google Scholar 

  • Perlman D (1950b) The metabolism of carbohydrates by Neurospora. Bull Torrey Bot Club 77:103–109

    Article  CAS  Google Scholar 

  • Perry CB, Lester G (1973) The identification of a third b-galactosidase activity in Neurospora crassa. Biochem Biophys Res Commun 54(4):1476–1482

    Article  CAS  Google Scholar 

  • Phadtare SU, Rawat UB, Rao MB (1997) Purification and characterisation of xylitol dehydrogenase from Neurospora crassa. FEMS Microbiol Lett 146(1):79–83

    Article  CAS  Google Scholar 

  • Phillips CM, Iavarone AT, Marletta MA (2012) A quantitative proteomic approach for cellulose degradationby Neurospora crassa. J Proteome Res 10:4177–4185

    Article  CAS  Google Scholar 

  • Prokisch H, Nussberger S, Westermann B (2002) Protein import into mitochondria of Neurospora crassa. Fungal Genet Biol 36(2):85–90

    Article  CAS  Google Scholar 

  • Rajan JS, Virkar PD (1987) Induced pelletized growth of Neurospora crassa for tyrosinase biosynthesis in airlift fermenters. Biotechnol Bioeng 29(6):770–772

    Article  CAS  Google Scholar 

  • Rao M, Deshpande V, Keskar S, Srinivasan MC (1983) Cellulase and ethanol production from cellulose by Neurospora crassa. Enzyme Microb Technol 5:133–136

    Article  CAS  Google Scholar 

  • Rao M, Mishra C, Keskar S, Srinivasan MC (1985) Production of ethanol from wood and agricultural residues by Neurospora crassa. Enzyme Microb Technol 7(12):625–628

    Article  CAS  Google Scholar 

  • Rawat U, Rao M (1996) Purification, kinetic characterization and involvement of tryptophan residue at the NADPH binding site of xylose reductase from Neurospora crassa. Biochim Biophys Acta 1293:222–230

    Article  Google Scholar 

  • Rawat U, Bodhe A, Deshpande V, Rao M (1993) D-xylose catabolizing enzymes in Neurospora crassa and their relationship to D-xylose fermentation. Biotechnol Lett 15(11):1173–1178

    Article  CAS  Google Scholar 

  • Richard P, Londesborough J, Putkonen M, Kalkkinen N, Penttila M (2001) Cloning and expression of a fungal L-arabinitol 4-dehydrogenase gene. J Biol Chem 276:40631–40637

    Article  CAS  Google Scholar 

  • Riquelme M, Yarden O, Bartnicki-Garcia S, Bowman B, Castro-Longoria E, Free SJ, Fleissner A, Freitag M, Lew RR, Mouriño-Pérez R, Plamann M, Rasmussen C, Richthammer C, Roberson RW, Sanchez-Leon E, Seiler S, Watters MK (2011) Architecture and development of the Neurospora crassa hypha—a model cell for polarized growth. Fungal Biol 115(6):446–474

    Article  Google Scholar 

  • Romero MD, Aguado J, González L, Ladero M (1999) Cellulase production by Neurospora crassa on wheat straw. Enzyme Microb Technol 25(3–5):244–250

    Article  CAS  Google Scholar 

  • Rountree MR, Selker EU (2010) DNA methylation and the formation of heterochromatin in Neurospora crassa. Heredity (Edinb) 105(1):38–44

    Article  CAS  Google Scholar 

  • Ryan D, Russell AK, Leukes WD, Rose PD, Burton SG (1998) Suitability of a modified capillary membrane for growth of fungal biofilms. Desalination 115:303–306

    Article  CAS  Google Scholar 

  • Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295

    Article  CAS  Google Scholar 

  • Saxena RC, Adhikari DK, Goyal HB (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sust Energy Rev 13:167–178

    Article  CAS  Google Scholar 

  • Scarborough GA (1970) Sugar transport in Neurospora crassa. J Biol Chem 245:3985–3987

    CAS  Google Scholar 

  • Schmoll M (2011) Assessing the relevance of light for fungi: implications and insights into the network of signal transmission. Adv Appl Microbiol 76:27–78

    Article  CAS  Google Scholar 

  • Schmoll M, Franchi L, Kubicek CP (2005) Envoy, a PAS/LOV domain protein of Hypocrea jecorina (anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell 4(12):1998–2007

    Article  CAS  Google Scholar 

  • Schmoll M, Tian C, Sun J, Tisch D, Glass NL (2012) Unraveling the molecular basis for light modulated cellulase gene expression—the role of photoreceptors in Neurospora crassa. BMC Genomics 2012, 13:127. doi:10.1186/1471-2164-13-127 (http://www.biomedcentral.com/1471-2164/13/127)

  • Schneider RP, Wiley WR (1971) Kinetic characteristics of the two glucose transport system in Neurospora crassa. J Bacteriol 106:479–486

    CAS  Google Scholar 

  • Shear CL, Dodge BO (1927) Life histories and heterothallism of the red bread-mold fungi of the Monilia sitophila group. J Agric Res 34:1019–1041

    Google Scholar 

  • Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31:401–408

    Article  CAS  Google Scholar 

  • Skoog K, Hahn-Hägerdal B (1988) Xylose fermentation. Enzyme Microb Technol 10:66–80

    Article  CAS  Google Scholar 

  • Smith KM, Sancar G, Dekhang R, Sullivan CM, Li S, Tag AG, Sancar C, Bredeweg EL, Priest HD, McCormick RF, Thomas TL, Carrington JC, Stajich JE, Bell-Pedersen D, Brunner M, Freitag M (2010) Transcription factors in light and circadian clock signaling networks revealed by genome-wide mapping of direct targets for Neurospora WHITE COLLAR COMPLEX. Eukaryot Cell 9(10):1549–1556

    Article  CAS  Google Scholar 

  • Stephens R, DeBusk A (1975) [75] β-Galactosidases from Neurospora crassa. Methods Enzymol 42:497–503

  • Strauss BS, Pierog S (1954) Gene interactions: the mode of action of the suppressor of acetate-requiring mutants of Neurospora crassa. J Gen Microbiol 10:221–235

    CAS  Google Scholar 

  • Su WW, He BJ (1997) Secreted enzyme production by fungal pellets in a perfusion bioreactor. J Biotechnol 54:43–52

    Article  CAS  Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases—production, applications and challenges. J Sci Ind Res 64:832–844

    CAS  Google Scholar 

  • Sullivan R, Zhao H (2007) Cloning, characterization, and mutational analysis of a highly active and stable L-arabinitol 4-dehydrogenase from Neurospora crassa. Appl Microbiol Biotechnol 77:845–852

    Article  CAS  Google Scholar 

  • Sun J, Glass L (2011) Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS One 6(9):e25654

    Article  CAS  Google Scholar 

  • Sun J, Tian C, Diamond S, Glass NL (2012) Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Eukaryot Cell 11(4):482–493

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  CAS  Google Scholar 

  • Takata R, Tokita K, Mori S, Shimoda R, Harada N, Ichinose H, Kaneko S, Igarashi K, Samejima M, Tsumuraya Y, Kotake T (2010) Degradation of carbohydrate moieties of arabinogalactan-proteins by glycoside hydrolases from Neurospora crassa. Carbohydr Res 345(17):2516–2522

    Article  CAS  Google Scholar 

  • Taleb F, Radford A (1995) The cellulase complex of Neurospora crassa: cbh-1 cloning, sequencing and homologies. Gene 161:137–138

    Article  CAS  Google Scholar 

  • Tergerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179

    Article  Google Scholar 

  • Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA, Cate JHD, Glass NL (2009) Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci U S A 106:22157–22162

    Article  CAS  Google Scholar 

  • Tisch D, Schmoll M (2010) Light regulation of metabolic pathways in fungi. Appl Microbiol Biotechnol 85(5):1259–1277

    Article  CAS  Google Scholar 

  • Tissieres A, Mitchell HK, Haskins FA (1953) Studies on the respiratory system of the poky strain of Neurospora. J Biol Chem 205:423–433

    CAS  Google Scholar 

  • Tomás-Pejó E, Oliva JM, Ballesteros M (2008) Realistic approach for full-scale bioethanol production from lignocellulose: a review. J Sci Ind Res 67(11):874–884

    Google Scholar 

  • Turner BC, Perkins DD, Fairfield A (2001) Neurospora from natural populations: a global study. Fungal Genet Biol 32:67–92

    Article  CAS  Google Scholar 

  • van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90:391–418

    Article  CAS  Google Scholar 

  • Vandeska E, Amartey S, Kuzmanova S, Jeffries T (1995) Effects on environmental conditions on production of xylitol by Candida boidinii. World J Microbiol Biotechnol 11:213–218

    Article  CAS  Google Scholar 

  • Verma N, Kumar V, Bansal MC (2012) Utilization of egg shell waste in cellulase production by Neurospora crassa under wheat bran-based solid state fermentation. Pol J Environ Stud 21(2):491–497

    CAS  Google Scholar 

  • Viikari L, Vehmaanperä J, Koivula A (2012) Lignocellulosic ethanol: from science to industry. Biomass Bioenergy 46:13–24

    Article  CAS  Google Scholar 

  • Weiss B, Turian G (1966) A study of conidiation in Neurospora crassa. J Gen Microbiol 44:407–418

    CAS  Google Scholar 

  • Woodyer R, Simurdiak M, van der Donk WA, Zhao H (2005) Heterologous expression, purification, and characterization of a highly active xylose reductase from Neurospora crassa. Appl Environ Microbiol 71(3):1642–1647

    Article  CAS  Google Scholar 

  • Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157

    Article  CAS  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966

    Article  CAS  Google Scholar 

  • Xie X, Wilkinson HH, Correa A, Lewis ZA, Bell-Pedersen D, Ebbole DJ (2004) Transcriptional response to glucose starvation and functional analysis of a glucose transporter of Neurospora crassa. Fungal Genet Biol 41:1104–1119

    Article  CAS  Google Scholar 

  • Xiros C, Topakas E, Katapodis P, Christakopoulos P (2008) Hydrolysis and fermentation of brewer's spent grain by Neurospora crassa. Bioresour Technol 99:5427–5435

    Article  CAS  Google Scholar 

  • Yazdi MT, Radford A, Keen JN, Woodward JR (1990a) Cellulase production by Neurospora crassa: purification and characterization of cellulolytic enzymes. Enzyme Microb Technol 12(2):120–123

    Article  CAS  Google Scholar 

  • Yazdi MT, Woodward JR, Radford A (1990b) Cellulase production by Neurospora crassa: the enzymes of the complex and their regulation. Enzyme Microb Technol 12(2):116–119

    Article  CAS  Google Scholar 

  • Yazdi MT, Woodward JR, Radford A (1990c) The cellulase complex of Neurospora crassa: activity, stability and release. J Gen Microbiol 136(7):1313–1319

    CAS  Google Scholar 

  • Yazdi MT, Khosravi AA, Nemati M, Motlagh NDV (2003) Purification and characterization of two intracellular β-glucosidases from the Neurospora crassa mutant cell-1. World J Microbiol Biotechnol 19:79–84

    Article  CAS  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56(1–2):17–34

    Article  CAS  Google Scholar 

  • Zhang Z, Qu Y, Zhang X, Lin J (2008) Effects of oxygen limitation on xylose fermentation, intracellular metabolites, and key enzymes of Neurospora crassa AS3.1602. Appl Biochem Biotechnol 145(1–3):39–51

    Article  CAS  Google Scholar 

  • Zhao X, Gao P, Wang Z (1998) The production and properties of a new xylose reductase from fungus Neurospora crassa. Appl Biochem Biotechnol 70–72:405–414

    Article  Google Scholar 

  • Zink MW (1969) Regulation of NAD-specific alcohol dehydrogenase in Neurospora crassa. Can J Microbiol 15:265–271

    Article  CAS  Google Scholar 

  • Znameroski EA, Coradetti ST, Roche CM, Tsai JC, Iavarone AT, Cate JHD, Glass NL (2012) Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proc Natl Acad Sci U S A 109(16):6012–6017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Kekos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dogaris, I., Mamma, D. & Kekos, D. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?. Appl Microbiol Biotechnol 97, 1457–1473 (2013). https://doi.org/10.1007/s00253-012-4655-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4655-2

Keywords

Navigation