Skip to main content

Advertisement

Log in

Current knowledge and perspectives on biofilm formation: the case of Listeria monocytogenes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Listeriosis is a rare, serious, and mainly food-borne infection caused by the bacterium Listeria monocytogenes. This food-borne infection primarily affects pregnant women and immunologically compromised individuals. L. monocytogenes is recognized as a problem for the food industry, mainly due to its environmental persistence, attributed in part to its ability to form biofilms. Biofilms are microbial communities adhered to biotic or abiotic surfaces coated by self-produced extracellular polymers. These structures confer protection to bacterial cells and decrease the efficiency of cleaning and disinfection procedures. This article presents a brief review of current perspectives on the formation of biofilms, with emphasis on L. monocytogenes, highlighting the importance of cell-to-cell communication and structural composition of the microbial communities. The techniques currently used to study biofilms and the need to develop new strategies for the prevention and control of biofilm-forming pathogens are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adrião A, Vieira M, Fernandes I, Barbosa M, Sol M, Tenreiro RP, Chambel L, Barata B, Zilhao I, Shama G, Perni S, Jordan SJ, Andrew PW, Faleiro ML (2008) Marked intra-strain variation in response of Listeria monocytogenes dairy isolates to acid or salt stress and the effect of acid or salt adaptation on adherence to abiotic surfaces. Int J Food Microbiol 123:142–150

    Article  CAS  Google Scholar 

  • Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen TA (2006) Characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128

    Article  CAS  Google Scholar 

  • Almeida C, Azevedo NF, Santos S, Keevil CW, Vieira MJ (2011) Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS One 6:1–13

    Google Scholar 

  • Andrews JS, Rolfe SA, Huang WE, Scholes JD, Banwart SA (2010) Biofilm formation in environmental bacteria is influenced by different macromolecules depending on genus and species. Environ Microbiol 12:2496–2507

    Article  CAS  Google Scholar 

  • Barancelli GV, Camargo TM, Reis CMF, Porto E, Hofer E, Oliveira CAF (2011) Incidence of Listeria monocytogenes in cheese manufacturing plants from the northeast region of São Paulo, Brazil. J Food Protect 74:816–819

    Article  Google Scholar 

  • Belval SC, Gal L, Margiewes S, Garmyn D, Piveteau P, Guzzo J (2006) Assessment of the roles of luxS, S-ribosyl homocysteine, and autoinducer 2 in cell attachment during biofilm formation by Listeria monocytogenes EDG-e. Appl Environ Microbiol 72:2644–2650

    Article  CAS  Google Scholar 

  • Bennett RW, Lancette GA (1998) Bacteriological analytical manual, 8th edn, revision A, chapter 12. Available at http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalyticalManualBAM/UCM071429. Accessed 20 Jan 2012

  • Berk V, Fong JCN, Dempsey GT, Develioglu ON, Zhuang X, Liphardt J, Yildiz FH, Chu S (2012) Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 337:236–239

    Article  CAS  Google Scholar 

  • Besnard V, Federighi M, Cappelier JM (2000) Evidence of viable but non-culturable state in Listeria monocytogenes by direct viable count and CTC-DAPI double staining. Food Microbiol 17:697–704

    Article  Google Scholar 

  • Bollinger RR, Barbas AS, Bush EL, Lin SS, Parke W (2007) Biofilms in the normal human large bowel: fact rather than fiction. Gut 56:1481–1482

    Google Scholar 

  • Borucki MK, Peppin JD, White D, Loge F, Call DR (2003) Variation in biofilm formation among strains of Listeria monocytogenes. Appl Environ Microbiol 69:7336–7342

    Article  CAS  Google Scholar 

  • Brito MAVP, Somkuti GA, Renye JA (2011) Production of antilisterial bacteriocins by staphylococci isolated from bovine milk. J Dairy Sci 94:1194–1200

    Article  CAS  Google Scholar 

  • Brooks JD, Flint SH (2008) Biofilms in the food industry: problems and potential solutions. Int J Food Sci Technol 43:2163–2176

    Article  CAS  Google Scholar 

  • Carpentier B, Chassaing D (2004) Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises. Int J Food Microbiol 97:111–122

    Article  CAS  Google Scholar 

  • Carpentier B, Cerf P (2011) Persistence of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol 145:1–8

    Article  Google Scholar 

  • Castro V, Escudero JM, Rodriguez JL, Muniozguren N, Uribarri J, Saez D, Vazquez J (2012) Listeriosis outbreak caused by Latin-style fresh cheese, Bizkaia, Spain, August 2012. Eurosurveillance 17(42):pii=20298. Available at http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20298

  • Centers for Disease Control and Prevention (CDC) (2012) National case-based surveillance and Listeria. Available at http://www.cdc.gov/listeria/surveillance.html. Accessed 3 Oct 2012

  • Chae MS, Schraft H (2000) Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains. Int J Food Microbiol 62:103–111

    Article  CAS  Google Scholar 

  • Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S (2007) Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 75:125–132

    Article  CAS  Google Scholar 

  • Chavant P, Martinie B, Meylheuc T, Bellon-Fontaine MN, Hebraud M (2002) L. monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl Environ Microbiol 68:728–737

    Article  CAS  Google Scholar 

  • Chiarini E, Tyler K, Farber JM, Pagotto F, Destro MT (2009) Listeria monocytogenes in two different poultry facilities: manual and automatic evisceration. Poult Sci 88:791–797

    Article  CAS  Google Scholar 

  • Chmielewski RAN, Frank JF (2003) Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf 2:22–32

    Article  CAS  Google Scholar 

  • Coetzee N, Laza-Stanca V, Orendi JM, Harvey S, Elviss NC, Grant KA (2011) A cluster of Listeria monocytogenes infections in hospitalised adults, Midlands, England, February 2011. Eurosurveillance 16(20):pii=19869. Available at http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19869

  • Cokes C, France AM, Reddy V, Hanson H, Lee L, Kornstein L, Stavinsky F, Balter S (2011) Serving high-risk foods in a high-risk setting: survey of hospital food service practices after an outbreak of listeriosis in a hospital. Infect Control Hosp Epidemiol 32:380–386

    Article  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell D, Korber DR, Lappinscott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  Google Scholar 

  • Cotter PD, Hill C, Ross P (2005) Bacteriocins: developing innate immunity for food. Nature Rev Microbiol 7:777–788

    Article  CAS  Google Scholar 

  • Czaczyk K, Myszka K (2007) Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Pol J Environ Stud 16:799–806

    CAS  Google Scholar 

  • Desai MA, Soni KA, Nannapaneni R, Schilling MW, Silva JL (2012) Reduction of Listeria monocytogenes biofilms on stainless steel and polystyrene surfaces by essential oils. J Food Protect 75:1332–1337

    Article  CAS  Google Scholar 

  • Di Bonaventura G, Piccolomini R, Paludi D, D’orio V, Vergara A, Conter M, Ianieri A (2008) Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. J Appl Microbiol 104:1552–1561

    Article  Google Scholar 

  • Dickschat JS (2010) Quorum sensing and bacterial biofilms. Nat Product Rep 27:343–369

    Article  CAS  Google Scholar 

  • Djordjevic D, Wiedmann M, McLandsborough LA (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68:2950–2958

    Article  CAS  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nature Rev 8:623–633

    CAS  Google Scholar 

  • Foong SCC, Dickson JS (2004) Survival and recovery of viable but nonculturable Listeria monocytogenes cells in a nutritionally depleted medium. J Food Protect 67:1641–1645

    Google Scholar 

  • Francolini I, Donelli G (2010) Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol 59:227–238

    CAS  Google Scholar 

  • Freitag NE, Port GC, Minev MD (2009) Listeria monocytogenes—from saprophyte to intracellular pathogen. Nature Rev Microbiol 7:623–628

    Article  CAS  Google Scholar 

  • Fretz R, Pichler J, Sagel U, Much P, Ruppitsch W, Pietzka AT, Stöger A, Huhulescu S, Heuberger S, Appl G, Werber D, Stark K, Prager R, Flieger A, Karpiskova R, Pfaff G, Allerberger F (2010) Update: multinational listeriosis outbreak due to ‘Quargel’, a sour milk curd cheese, caused by two different L. monocytogenes serotype 1/2a strains, 2009–2010. Eurosurveillance 15(16):pii=19543. Available at http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19543

  • Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40

    Article  CAS  Google Scholar 

  • Gaulin C, Ramsay D, Bekal S (2012) Widespread listeriosis outbreak attributable to pasteurized cheese, which led to extensive cross-contamination affecting cheese retailers, Quebec, Canada, 2008. J Food Protect 75:71–78

    Article  Google Scholar 

  • Gomes BC, Franco BDG, De Martinis ECP (2012) Microbiological food safety issue in Brazil—bacterial pathogens. Foodborne Pathog Dis (in press)

  • Gram L, Bagge-Ravn D, Ng YY, Gymoese P, Vogel BF (2007) Influence of food soiling matrix on cleaning and disinfection efficiency on surface attached Listeria monocytogenes. Food Control 18:1165–1171

    Article  CAS  Google Scholar 

  • Gamble R, Muriana PM (2007) Microplate fluorescence assay for measurement of the ability of strains of Listeria monocytogenes from meat and meat-processing plants to adhere to abiotic surfaces. Appl Environ Microbiol 73:5235–5244

    Article  CAS  Google Scholar 

  • Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15

    Article  Google Scholar 

  • Grande R, Di Giulio M, Bessa LJ, Di Campli E, Baffoni M, Guarnieri S, Cellini L (2010) Extracellular DNA in Helicobacter pylori biofilm: a backstairs rumour. J Appl Microbiol 110:490–498

    Article  CAS  Google Scholar 

  • Graves LM, Helsel LO, Steigerwalt AG, Morey RE, Daneshvar MI, Roof SE, Orsi RH, Fortes ED, Milillo SR, Den Bakker HC, Wiedmann M, Swaminathan B, Sauders BD (2010) Listeria marthii sp. Nov., isolated from natural environment, Finger Lakes National Forest. Int J Syst Evol Microbiol 60:1280–1288

    Article  CAS  Google Scholar 

  • Guiton PS, Hung CS, Kline KA, Roth R, Kau AL, Hayes E, Heuser J, Dodson KW, Caparon MG, Hultgren SJ (2009) Contribution of autolysin and sortase A during Enterococcus faecalis DNA-dependent biofilm development. Infect Immun 77:3626–3638

    Article  CAS  Google Scholar 

  • Habimana O, Guillier L, Kulakauskas S, Briandet R (2012) Spatial competition with Lactococcus lactis in mixed species continuous-flow biofilms inhibits Listeria monocytogenes growth. Biofouling 27:1065–1072

    Article  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev Microbiol 2:95–108

    Article  CAS  Google Scholar 

  • Hardie KR, Heurlier K (2008) Establishing bacterial communities by ‘word of mouth’: LuxS and autoinducer 2 in biofilm development. Nature Rev Microbiol 6:635–643

    Article  CAS  Google Scholar 

  • Harmsen M, Lappann M, Knøchel S, Molin S (2010) Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 76:2271–2279

    Article  CAS  Google Scholar 

  • Harrison JJ, Turner RJ, Marques LLR, Ceri H (2005) Biofilms. Ame Sci 93:508–515

    Google Scholar 

  • Harvey J, Keenan KP, Gilmour A (2007) Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiol 24:380–392

    Article  CAS  Google Scholar 

  • Hefford MA, D’Aoust S, Cyr TD, Austin JW, Sanders G, Kheradpir E, Kalmokoff ML (2005) Proteomic and microscopic analysis of biofilms formed by Listeria monocytogenes 568. Can J Microbiol 51:197–208

    Article  CAS  Google Scholar 

  • Ivanek R, Gröhn YT, Wiedmann M (2006) Listeria monocytogenes in multiple habitats and host populations: review of available data for mathematical modeling. Foodborne Pathog Dis 3:319–336

    Article  CAS  Google Scholar 

  • Izano EA, Amarante MA, Kher WB, Kaplan JB (2008) Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74:470–476

    Article  CAS  Google Scholar 

  • Jackson KA, Biggerstaff M, Tobin-D’Angelo M, Sweat D, Klos R, Nosari J, Garrison O, Boothe E, Saathoff-Huber L, Hainstock L, Fagan RP (2011) Multistate outbreak of Listeria monocytogenes associated with Mexican-style cheese made from pasteurized milk among pregnant, Hispanic women. J Food Protect 74:949–953

    Article  CAS  Google Scholar 

  • Kalmokoff ML, Austin JW, Wan X-D, Sanders G, Banerjee S, Farber JM (2001) Adsorption, attachment and biofilm formation among isolates of Listeria monocytogenes using model conditions. J Appl Microbiol 91:725–734

    Article  CAS  Google Scholar 

  • Lappann M, Claus H, Alen VT, Harmsen M, Elias J, Molin S, Vogel U (2010) A dual role of extracellular DNA during biofilm formation of Neisseria meningitides. Mol Microbiol 75:1355–1371

    Article  CAS  Google Scholar 

  • Lasa I (2006) Towards the identification of the common features of bacterial biofilm development. Int Microbiol 9:21–28

    CAS  Google Scholar 

  • Leclercq A, Clermont D, Bizet C, Grimont PAD, Le Flèche-Matéos A, Roche SM, Buchrieser C, Cadet-Daniel V, Le Monnier A, Lecuit M, Allerberger F (2010) Listeria rocourtiae sp. nov. Int J Syst Evolution Microbiol 60:1210–1214

    Article  CAS  Google Scholar 

  • Leriche V, Carpentier B (2000) Limitation of adhesion and growth of Listeria monocytogenes on stainless steel surfaces by Staphylococcus sciuri biofilms. J Appl Microbiol 88:594–605

    Article  CAS  Google Scholar 

  • Lindsay D, Holy AV (1997) Evaluation of dislodging methods for laboratory-grown bacterial biofilms. Food Microbiol 14:383–390

    Article  Google Scholar 

  • Lundén JM, Miettinen MK, Autio TJ, Korkeala HJ (2000) Persistent Listeria monocytogenes strains show enhanced adherence to food contact surface after short contact times. J Food Protect 63:1204–1207

    Google Scholar 

  • Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5:e1000354

    Article  CAS  Google Scholar 

  • Ma L, Wang J, Wang S, Anderson EM, Lam JS, Parsek MR, Woznlak DJ (2012) Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides in post-transcriptionally regulated. Environ Microbiol 14:1995–2005

    Article  CAS  Google Scholar 

  • Mai TL, Conner DE (2007) Effect of temperature and growth media on the attachment of Listeria monocytogenes to stainless steel. Int J Food Microbiol 120:282–286

    Article  CAS  Google Scholar 

  • Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, Tsang LH, Smeltzer MS, Horswill AR, Bayles KW (2009) Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One 4:1–12

    Article  CAS  Google Scholar 

  • Marcus R, Hurd S, Mank L, Mshar P, Phan Q, Jackson K, Watarida K, Salfinger Y, Kim S, Ishida ML, Kissler B (2009) Chicken salad as the source of a case of Listeria monocytogenes infection in Connecticut. J Food Protect 72:2602–2606

    Google Scholar 

  • Marsh EJ, Luo H, Wang H (2003) A three-tiered approach to differentiate Listeria monocytogenes biofilm-forming abilities. FEMS Microbiol Lett 228:203–210

    Article  Google Scholar 

  • Martins IS, Faria FCC, Miguel MLM, Dias MPSC, Cardoso FLL, Magalhães AMCG, Mascarenhas LA, Nouér SA, Barbosa AV, Vallim DC, Hofer E, Rebello RF, Riley LW, Moreira BM (2010a) A cluster of Listeria monocytogenes infections in hospitalized adults. Am J Infect Control 38:31–36

    Article  Google Scholar 

  • Martins M, Uppuluri P, Thomas DP, Cleary IA, Henriques M, Lopez-Ribot JL, Oliveira R (2010b) Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathol 169:323–331

    Article  CAS  Google Scholar 

  • Martins EA, Germano PML (2011) Listeria monocytogenes in ready-to-eat, sliced, cooked ham and salami products, marketed in the city of São Paulo, Brazil: occurrence, quantification and serotyping. Food Control 22:297–302

    Article  Google Scholar 

  • Maukonen J, Mättö J, Wirtanen G, Raaska L, Mattila-Sandholm T, Saarela M (2003) Methodologies for the characterization of microbes in industrial environments: a review. J Ind Microbiol Biotechnol 30:327–356

    Article  CAS  Google Scholar 

  • Ministry of Health of the Government of Chile (MHC) (2012) Listeria. Available at http://epi.minsal.cl/vigilancia-epidemiologica/enfermedades-de-notificacion-obligatoria/listeria. Accessed 5 Nov 2012

  • Minei CC, Gomes BC, Ratti RP, D’Angelis CEM, De Martinis ECP (2008) Influence of peroxyacetic acid and nisin and coculture with Enterococcus faecium on Listeria monocytogenes biofilm formation. J Food Prot 71:634–638

    Google Scholar 

  • Moltz AG, Martin SE (2005) Formation of biofilms by L. monocytogenes under various growth conditions. J Food Protect 68:92–97

    Google Scholar 

  • Monk IR, Cook GM, Monk BC, Bremer PJ (2004) Morphotypic conversion in Listeria monocytogenes biofilm formation: biological significance of rough colony isolates. Appl Environ Microbiol 70:6686–6694

    Article  CAS  Google Scholar 

  • Moons P, Michiels CW, Aertsen A (2009) Bacterial interactions in biofilms. Crit Rev Microbiol 35:157–168

    Article  CAS  Google Scholar 

  • Moretro T, Langsrud S (2004) Listeria monocytogenes: biofilm formation and persistence in food-processing environments. Biofilms 1:107–121

    Article  Google Scholar 

  • Mott IEC, Stickler DJ, Coakley WT, Bott TR (1998) The removal of bacterial biofilm from water-filled tubes using axially propagated ultrasound. J Appl Microbiol 84:509–514

    Article  Google Scholar 

  • Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D (2007) Release and persistence of extracellular DNA in the environment. Environ Biosaf Res 6:37–53

    Article  CAS  Google Scholar 

  • Nilsson RE, Ross T, Bowman JP (2011) Variability in biofilm production by Listeria monocytogenes correlated to stain origin and growth origin and growth conditions. Int J Food Microbiol 150:14–24

    Article  Google Scholar 

  • Nguyen UT, Wenderska IB, Chong MA, Koteva K, Wright GD, Burrows LL (2012) Small-molecule modulators of Listeria monocytogenes biofilm development. Appl Environ Microbiol 78:1454–1465

    Article  CAS  Google Scholar 

  • Norwood DE, Gilmour A (2001) The differential adherence capabilities of two Listeria monocytogenes strains in monoculture and multispecies biofilms as a function of temperature. Lett Appl Microbiol 33:320–324

    Article  CAS  Google Scholar 

  • Orgaz B, Kives J, Pedregosa AM, Monistrol IF, Laborda F, Sajos C, Laborda F (2006) Bacterial biofilm removal using fungal enzymes. Enzyme Microb Technol 40:51–56

    Article  CAS  Google Scholar 

  • Orsi RH, Den Bakker HC, Wiedmann M (2011) Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 301:79–96

    Article  CAS  Google Scholar 

  • Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228

    Article  CAS  Google Scholar 

  • Palmer J, Flint S, Brooks J (2007) Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol 34:577–588

    Article  CAS  Google Scholar 

  • Pamp SJ, Sternberg C, Tolker-Nielsen T (2009) Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry A 75:90–103

    Google Scholar 

  • Pan Y, Breidt F, Kathariou S (2006) Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment. Appl Environ Microbiol 72:7711–7717

    Article  CAS  Google Scholar 

  • Paredes J, Becerro S, Arizti F, Aguinaga A, Del Pozo JL, Arana S (2012) Real time monitoring of the impedance characteristics of staphylococcal bacterial biofilm cultures with a modified CDC reactor system. Biosens Bioelectron 38:226–232

    Article  CAS  Google Scholar 

  • Perry JA, Cvitkovitch DG, Lévesque CM (2009) Cell death in Streptococcus mutans biofilms: a link between CSP and extracellular DNA. Microbiol Lett 299:261–266

    Article  CAS  Google Scholar 

  • Poimenidou S, Melessi CA, Giaouris ED, Gounadaki AS, Nychas GJE, Skandamis PN (2009) Listeria monocytogenes attachment to and detachment from stainless steel surfaces in a simulated dairy processing environment. Appl Environ Microbiol 75:7182–7188

    Article  CAS  Google Scholar 

  • Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, Qu D (2007) Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiol 153:2083–2092

    Article  CAS  Google Scholar 

  • Reis CMF, Barbosa AV, Rusak LA, Vallim DC, Hofer E (2011) Antimicrobial susceptibilities of Listeria monocytogenes human strains isolated from 1970 to 2008 in Brazil. Rev Soc Bras Med Trop 44:173–176

    Article  Google Scholar 

  • Renier S, Hébraud M, Desvaux M (2011) Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen. Environ Microbiol 13:835–850

    Article  CAS  Google Scholar 

  • Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW (2007) The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. PNAS 104:8113–8118

    Article  CAS  Google Scholar 

  • Rieu A, Weidmann S, Garmyn D, Piveteau P, Guzzo J (2007) Agr system of Listeria monocytogenes EGD-e: role in adherence and differential expression pattern. Appl Environ Microbiol 73:6125–6133

    Article  CAS  Google Scholar 

  • Rieu A, Briandet R, Habimana O, Garmyn D, Guzzo J, Piveteau P (2008a) Listeria monocytogenes EDG-e biofilms: no mushrooms but a network of knitted chains. Appl Environ Microbiol 74:4491–4497

    Article  CAS  Google Scholar 

  • Rieu A, Lemaitre J-P, Guzzo J, Piveteau P (2008b) Interactions in dual species biofilms between Listeria monocytogenes EGD-e and several strains of Staphylococcus aureus. Int J Food Microbiol 126:76–82

    Article  CAS  Google Scholar 

  • Rodrigues DA, Almeida MA, Teixeira PA, Oliveira RT, Azeredo JC (2009) Effect of batch and fed-batch growth modes on biofilm formation by Listeria monocytogenes at different temperatures. Curr Microbiol 59:457–462

    Article  CAS  Google Scholar 

  • Rodriguez A, Autio WR, McLandsborough LA (2008) Effects of contact time, pressure, percent relative humidity (%RH), and material type on Listeria biofilm adhesive strength at a cellular level using atomic force microscopy (AFM). Food Biophysics 3:305–311

    Article  Google Scholar 

  • Sandasi M, Leonard CM, Viljoen AM (2010) The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett Appl Microbiol 50:30–35

    Article  CAS  Google Scholar 

  • Sant’Ana AS, Igarashi MC, Landgraf M, Destro MT, Franco BDGM (2012) Prevalence, populations and pheno- and genotypic characteristics of Listeria monocytogenes isolated from ready-to-eat vegetables marketed in São Paulo, Brazil. Int J Food Microbiol 155:1–9

    Article  Google Scholar 

  • Scallan E, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin M (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15

    Google Scholar 

  • Schaudinn C, Stoodley P, Kainovic A, O’Keeffe T, Costerton B, Robinson D, Baum M, Ehrlich G, Webster P (2007) Bacterial biofilms, other structures seen as mainstream concepts. Microbe 2:231–237

    Google Scholar 

  • Schooling SR, Hubley A, Beveridge TJ (2009) Interactions of DNA with biofilm-derived membrane vesicles. J Bacteriol 191:4097–4102

    Article  CAS  Google Scholar 

  • Schwab U, Hu Y, Wiedmann M, Boor KJ (2005) Alternative sigma factor δB is not essential for Listeria monocytogenes surface attachment. J Food Protect 68:311–317

    Google Scholar 

  • Shi X, Zhu X (2009) Biofilm formation and food safety in food industries. Trends Food Sci Technol 20:407–413

    Article  CAS  Google Scholar 

  • Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. Food Sci Technol 43:573–583

    Google Scholar 

  • Silva S, Teixeira P, Oliveira R, Azeredo J (2008) Adhesion to and viability of Listeria monocytogenes on food contact surfaces. J Food Prot 71:1379–1385

    Google Scholar 

  • Sofos JN (2008) Listeria monocytogenes—enemy no.1 for the ready-to-eat industry. The National Provisioner, Troy, pp 70–72

  • Sofos JN (2009) Biofilms: our constant enemies. Food Saf Mag 38:40–41

    Google Scholar 

  • Soni KA, Nannapaneni R, Hagens S (2010) Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage Listex P100. Foodborne Pathog Dis 7:427–434

    Article  CAS  Google Scholar 

  • Souza VM, Alves VF, Destro MT, De Martinis ECP (2008) Quantitative evaluation of Listeria monocytogenes in fresh and processed surubim fish (Pseudoplatystoma sp). Braz J Microbiol 39:527–528

    Article  Google Scholar 

  • Spoering AL, Gilmore MS (2006) Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol 9:133–137

    Article  CAS  Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nature Rev Microbiol 6:199–210

    Article  CAS  Google Scholar 

  • Tang J, Kang MS, Chen HC, Shi XM, Zhou R, Chen J, Du YW (2011) The staphylococcal nuclease prevents biofilm formation in Staphylococcus aureus and other biofilm-forming bacteria. Sci China Life Sci 54:863–869

    Article  CAS  Google Scholar 

  • Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53:1204–1209

    Article  CAS  Google Scholar 

  • Vilain S, Pretorius JM, Theron J, Brözel VS (2009) DNA as an adhesion: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75:2861–2868

    Article  CAS  Google Scholar 

  • Whitehead KA, Benson P, Verran J (2009) Differential fluorescent staining of Listeria monocytogenes and a whey food soil for quantitative analysis of surface hygiene. Int J Food Microbiol 135:75–80

    Article  CAS  Google Scholar 

  • Winkelströter LK, Gomes BC, Thomaz MRS, Souza VM, De Martinis ECP (2011) Lactobacillus sakei 1 and its bacteriocin influence adhesion of Listeria monocytogenes on stainless steel surface. Food Control 22:1404–1407

    Article  CAS  Google Scholar 

  • Wood TK, Hong SH, Ma Q (2011) Engineering biofilm formation and dispersal. Trends Biotechnol 29:87–94

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2012) Risk assessment of Listeria monocytogenes in ready-to-eat foods: interpretative summary. Available at http://www.who.int/foodsafety/publications/micro/en/mra4.pdf. Accessed 3 May 2012

  • Wright CJ, Shah MK, Powell LC, Armstrong I (2010) Application of AFM from microbial cell to biofilm. Scanning 32:134–149

    Article  CAS  Google Scholar 

  • Yde M, Naranjo M, Mattheus W, Stragier P, Pochet B, Beulens K, De Schrijver K, Van den Branden D, Laisnez V, Flipse W, Leclercq A, Lecuit M, Dierick K, Bertrand S (2012) Usefulness of the European Epidemic Intelligence Information System in the management of an outbreak of listeriosis, Belgium, 2011. Eurosurveillance 17(38):pii=20279. Available at http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20279

  • Zameer F, Gopal S, Krohne G, Kreft J (2010a) Development of a biofilm model for Listeria monocytogenes EDG-e. World J Microbiol Biotechnol 26:1143–1147

    Article  CAS  Google Scholar 

  • Zameer F, Kreft J, Gopal S (2010b) Interaction of Listeria monocytogenes and Staphylococcus epidermidis in dual species biofilms. J Food Saf 30:954–968

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the State of São Paulo Research Foundation—FAPESP for a research grant (Process 2010/12236-0) and for a master’s fellowship granted to the first author (Process 2011/07062-6). The Laboratório Multiusuário de Microscopia Confocal of Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo is also acknowledged (Process FAPESP 2004/08868-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Cristina Pereira De Martinis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, E.P., De Martinis, E.C.P. Current knowledge and perspectives on biofilm formation: the case of Listeria monocytogenes . Appl Microbiol Biotechnol 97, 957–968 (2013). https://doi.org/10.1007/s00253-012-4611-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4611-1

Keywords

Navigation