Skip to main content
Log in

Optimization of the pilot-scale production of an ice-binding protein by fed-batch culture of Pichia pastoris

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ice-binding proteins (IBPs) can bind to the ice crystal and inhibit its growth. Because this property of IBPs can increase the freeze–thaw survival of cells, IBPs have attracted the attention from industries for their potential use in biotechnological applications. However, their use was largely hampered by the lack of the large-scale recombinant production system. In this study, the codon-optimized IBP from Leucosporidium sp. (LeIBP) was constructed and subjected to high-level expression in methylotrophic Pichia pastoris system. In a laboratory-scale fermentation (7 L), the optimal induction temperature and pH were determined to be 25 °C and 6.0, respectively. Further, employing glycerol fed-batch phase prior to methanol induction phase enhanced the production of recombinant LelBP (rLeIBP) by ∼100 mg/l. The total amount of secreted proteins at these conditions (25 °C, pH 6.0, and glycerol fed-batch phase) was ∼443 mg/l, 60 % of which was rLeIBP, yielding ∼272 mg/l. In the pilot-scale fermentation (700 L) under the same conditions, the yield of rLeIBP was 300 mg/l. To our best knowledge, this result reports the highest production yield of the recombinant IBP. More importantly, the rLeIBP secreted into culture media was stable and active for 6 days of fermentation. The thermal hysteresis (TH) activity of rLeIBP was about 0.42 °C, which is almost the same to those reported previously. The availability of large quantities of rLeIBP may accelerate further application studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antson AA, Smith DJ, Roper DI, Lewis S, Caves LS, Verma CS, Buckley SL, Lillford PJ, Hubbard RE (2001) Understanding the mechanism of ice binding by type III antifreeze proteins. J Mol Biol 305(4):875–889

    Article  CAS  Google Scholar 

  • Atici O, Nalbantoglu B (2003) Antifreeze proteins in higher plants. Phytochemistry 64(7):1187–1196

    Article  CAS  Google Scholar 

  • Barrett J (2001) Thermal hysteresis proteins. Int J Biochem Cell Biol 33(2):105–117

    Article  CAS  Google Scholar 

  • Ben RN (2001) Antifreeze glycoproteins—preventing the growth of ice. ChemBioChem 2(3):161–166

    Article  CAS  Google Scholar 

  • Bouvet V, Ben RN (2003) Antifreeze glycoproteins: structure, conformation, and biological applications. Cell Biochem Biophys 39(2):133–144

    Article  CAS  Google Scholar 

  • Chao H, Davies PL, Sykes BD, Sonnichsen FD (1993) Use of proline mutants to help solve the NMR solution structure of type III antifreeze protein. Protein Sci 2(9):1411–1428

    Article  CAS  Google Scholar 

  • Chen G, Jia Z (1999) Ice-binding surface of fish type III antifreeze. Biophys J 77(3):1602–1608

    Article  CAS  Google Scholar 

  • Clare JJ, Romanes MA, Rayment FB, Rowedder JE, Smith MA, Payne MM, Sreekrishna K, Henwood CA (1991) Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene 105(2):205–212

    Article  CAS  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7(4):385–389

    Article  Google Scholar 

  • d’Anjou MC, Daugulis AJ (2001) A rational approach to improving productivity in recombinant Pichia pastoris fermentation. Biotechnol Bioeng 72(1):1–11

    Article  Google Scholar 

  • Davies PL, Fletcher GL, Hew CL (1989) Fish antifreeze protein genes and their use in transgenic studies. Oxf Surv Eukaryot Genes 6:85–109

    CAS  Google Scholar 

  • Davies PL, Baardsnes J, Kuiper MJ, Walker VK (2002) Structure and function of antifreeze proteins. Philos Trans R Soc Lond B Biol Sci 357(1423):927–935

    Article  CAS  Google Scholar 

  • Doucet D, Tyshenko MG, Kuiper MJ, Graether SP, Sykes BD, Daugulis AJ, Davies PL, Walker VK (2000) Structure–function relationships in spruce budworm antifreeze protein revealed by isoform diversity. Eur J Biochem 267(19):6082–6088

    Article  CAS  Google Scholar 

  • Fuller BJ (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Lett 25(6):375–388

    CAS  Google Scholar 

  • Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry J, Davies PL (2008) A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold. Biochem J 411(1):171–180

    Article  CAS  Google Scholar 

  • Gauthier SY, Scotter AJ, Lin FH, Baardsnes J, Fletcher GL, Davies PL (2008) A re-evaluation of the role of type IV antifreeze protein. Cryobiology 57(3):292–296

    Article  CAS  Google Scholar 

  • Graether SP, Sykes BD (2004) Cold survival in freeze-intolerant insects: the structure and function of beta-helical antifreeze proteins. Eur J Biochem 271(16):3285–3296

    Article  CAS  Google Scholar 

  • Harding MM, Anderberg PI, Haymet AD (2003) ‘Antifreeze’ glycoproteins from polar fish. Eur J Biochem 270(7):1381–1392

    Article  CAS  Google Scholar 

  • Hew CL, Davies PL, Fletcher G (1992) Antifreeze protein gene transfer in Atlantic salmon. Mol Mar Biol Biotechnol 1(4–5):309–317

    CAS  Google Scholar 

  • Hong F, Meinander NQ, Jonsson LJ (2002) Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnol Bioeng 79(4):438–449

    Article  CAS  Google Scholar 

  • Inan M, Chiruvolu V, Eskridge KM, Vlasuk GP, Dickerson K, Brown S, Meagher MM (1999) Optimization of temperature-glycerol-pH conditions for a fed-batch fermentation process for recombinant hookworm (Ancylostoma caninum) anticoagulant peptide (AcAP-5) production by Pichia pastoris. Enzym Microb Technol 24(7):438–445

    Article  CAS  Google Scholar 

  • Kawahara H (2002) The structures and functions of ice crystal-controlling proteins from bacteria. J Biosci Bioeng 94(6):492–496

    CAS  Google Scholar 

  • Knight CA, Duman JG (1986) Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiology 23(3):256–262

    Article  CAS  Google Scholar 

  • Knight CA, DeVries AL, Oolman LD (1984) Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308(5956):295–296

    Article  CAS  Google Scholar 

  • Koganesawa N, Aizawa T, Shimojo H, Miura K, Ohnishi A, Demura M, Hayakawa Y, Nitta K, Kawano K (2002) Expression and purification of a small cytokine growth-blocking peptide from armyworm Pseudaletia separata by an optimized fermentation method using the methylotrophic yeast Pichia pastoris. Protein Expr Purif 25(3):416–442

    Article  CAS  Google Scholar 

  • Kwan AH, Fairley K, Anderberg PI, Liew CW, Harding MM, Mackay JP (2005) Solution structure of a recombinant type I sculpin antifreeze protein. Biochemistry 44(6):1980–1988

    Article  CAS  Google Scholar 

  • Lee JK, Park KS, Park S, Park H, Song YH, Kang SH, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60(2):222–228

    Article  CAS  Google Scholar 

  • Lee JK, Kim YJ, Park KS, Shin SC, Kim HJ, Song YH, Park H (2011) Molecular and comparative analyses of type IV antifreeze proteins (AFPIVs) from two Antarctic fishes, Pleuragramma antarcticum and Notothenia coriiceps. Comp Biochem Physiol B Biochem Mol Biol 159(4):197–205

    Article  Google Scholar 

  • Lee JH, Park AK, Do H, Park KS, Moh SH, Chi YM, Kim HJ (2012a) Structural basis for the antifreeze activity of an ice-binding protein from an Arctic yeast. J Biol Chem 287:11460–11468

    Article  CAS  Google Scholar 

  • Lee SG, Koh HY, Lee JH, Kang S, Kim HJ (2012b) Cryopreservative effects of the recombinant ice-binding protein from the Arctic yeast Leucosporidium sp. on red blood cells. Appl Biochem Biotechnol 167:824–834

    Article  CAS  Google Scholar 

  • Leinala EK, Davies PL, Doucet D, Tyshenko MG, Walker VK, Jia Z (2002a) A beta-helical antifreeze protein isoform with increased activity. Structural and functional insights. J Biol Chem 277(36):33349–33352

    Article  CAS  Google Scholar 

  • Leinala EK, Davies PL, Jia Z (2002b) Crystal structure of beta-helical antifreeze protein points to a general ice binding model. Structure 10(5):619–627

    Article  CAS  Google Scholar 

  • Li Z, Xiong F, Lin Q, d’Anjou M, Daugulis AJ, Yang DS, Hew CL (2001) Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expr Purif 21(3):438–445

    Article  Google Scholar 

  • Lim HK, Choi SJ, Kim KY, Jung KH (2003) Dissolved-oxygen-stat controlling two variables for methanol induction of rGuamerin in Pichia pastoris and its application to repeated fed-batch. Appl Microbiol Biotechnol 62(4):342–348

    Google Scholar 

  • Liu Y, Li Z, Lin Q, Kosinski J, Seetharaman J, Bujnicki JM, Sivaraman J, Hew CL (2007) Structure and evolutionary origin of Ca(2+)-dependent herring type II antifreeze protein. PLoS One 2(6):e548

    Article  Google Scholar 

  • Loewen MC, Liu X, Davies PL, Daugulis AJ (1997) Biosynthetic production of type II fish antifreeze protein: fermentation by Pichia pastoris. Appl Microbiol Biotechnol 48(4):480–486

    Article  CAS  Google Scholar 

  • Low WK, Miao M, Ewart KV, Yang DS, Fletcher GL, Hew CL (1998) Skin-type antifreeze protein from the shorthorn sculpin, Myoxocephalus scorpius. Expression and characterization of a Mr 9, 700 recombinant protein. J Biol Chem 273(36):23098–23103

    Article  CAS  Google Scholar 

  • Middleton AJ, Brown AM, Davies PL, Walker VK (2009) Identification of the ice-binding face of a plant antifreeze protein. FEBS Lett 583(4):815–819

    Article  CAS  Google Scholar 

  • Mok YF, Lin FH, Graham LA, Celik Y, Braslavsky I, Davies PL (2010) Structural basis for the superior activity of the large isoform of snow flea antifreeze protein. Biochemistry 49(11):2593–2603

    Article  CAS  Google Scholar 

  • Muryoi N, Sato M, Kaneko S, Kawahara H, Obata H, Yaish MW, Griffith M, Glick BR (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J Bacteriol 186(17):5661–5671

    Article  CAS  Google Scholar 

  • Nishimiya Y, Kondo H, Takamichi M, Sugimoto H, Suzuki M, Miura A, Tsuda S (2008) Crystal structure and mutational analysis of Ca2+-independent type II antifreeze protein from longsnout poacher, Brachyopsis rostratus. J Mol Biol 382(3):734–746

    Article  CAS  Google Scholar 

  • Pal Y, Khushoo A, Mukherjee KJ (2006) Process optimization of constitutive human granulocyte-macrophage colony-stimulating factor (hGM-CSF) expression in Pichia pastoris fed-batch culture. Appl Microbiol Biotechnol 69(6):650–657

    Article  CAS  Google Scholar 

  • Park KS, Do H, Lee JH, Park SI, Kim EJ, Kim SJ, Kang SH, Kim HJ (2012) Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Cryobiology 64:286–296

    Article  CAS  Google Scholar 

  • Patel SN, Graether SP (2010) Structures and ice-binding faces of the alanine-rich type I antifreeze proteins. Biochem Cell Biol 88(2):223–229

    Article  CAS  Google Scholar 

  • Raymond JA, Fritsen CH (2001) Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiology 43(1):63–70

    Article  CAS  Google Scholar 

  • Raymond JA, Knight CA (2003) Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology 46(2):174–181

    Article  CAS  Google Scholar 

  • Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61(2):214–221

    Article  CAS  Google Scholar 

  • Raymond JA, Christner BC, Schuster SC (2008) A bacterial ice-binding protein from the Vostok ice core. Extremophiles 12(5):713–717

    Article  CAS  Google Scholar 

  • Raymond JA, Janech M, Fritsen C (2009) Novel ice-binding proteins from a psychrophilic antarctic alga (chlamydomonadaceae, chlorophyceae). J Phycol 45:130–136

    Article  CAS  Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8(8):423–488

    Article  CAS  Google Scholar 

  • Siemer AB, McDermott AE (2008) Solid-state NMR on a type III antifreeze protein in the presence of ice. J Am Chem Soc 130(51):17394–17399

    Article  CAS  Google Scholar 

  • Sinha J, Plantz BA, Inan M, Meagher MM (2005) Causes of proteolytic degradation of secreted recombinant proteins produced in methylotrophic yeast Pichia pastoris: case study with recombinant ovine interferon-τ. Biotechnol Bioeng 89:102–112

    Article  CAS  Google Scholar 

  • Solomon RG, Appels R (1999) Stable, high-level expression of a type I antifreeze protein in Escherichia coli. Protein Expr Purif 16(1):53–62

    Article  CAS  Google Scholar 

  • Tong L, Lin Q, Wong WK, Ali A, Lim D, Sung WL, Hew CL, Yang DS (2000) Extracellular expression, purification, and characterization of a winter flounder antifreeze polypeptide from Escherichia coli. Protein Expr Purif 18(2):175–181

    Article  CAS  Google Scholar 

  • Tyshenko MG, d’Anjou M, Davies PL, Daugulis AJ, Walker VK (2006) Challenges in the expression of disulfide bonded, threonine-rich antifreeze proteins in bacteria and yeast. Protein Expr Purif 47(1):152–161

    Article  CAS  Google Scholar 

  • Wang Y, Wang Z, Xu Q, Du G, Hua Z, Liu L, Li J, Chen J (2009) Lowering induction temperature for enhanced production of polygalacturonate lyase in recombinant Pichia pastoris. Proc Biochem 44(9):949–954

    Article  CAS  Google Scholar 

  • Wohrmann A (1996) Antifreeze glycoproteins in fishes: structure, mode of action and possible applications. Tierarztl Prax 24(1):1–9

    CAS  Google Scholar 

  • Xiao N, Suzuki K, Nishimiya Y, Kondo H, Miura A, Tsuda S, Hoshino T (2010) Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J 277(2):394–403

    Article  CAS  Google Scholar 

  • Zhang DQ, Liu B, Feng DR, He YM, Wang JF (2004) Expression, purification, and antifreeze activity of carrot antifreeze protein and its mutants. Protein Expr Purif 35(2):257–263

    Article  CAS  Google Scholar 

  • Zhu A, Monahan C, Zhang Z, Hurst R, Leng L, Goldstein J (1995) High-level expression and purification of coffee bean alpha-galactosidase produced in the yeast Pichia pastoris. Arch Biochem Biophys 324(1):65–70

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Agenda Project from The Korea Research Council of Fundamental Science & Technology (KRCF; grant no. PG12010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Se Jong Han or Hak Jun Kim.

Additional information

J. H. Lee and S. G. Lee contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 7476 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.H., Lee, S.G., Do, H. et al. Optimization of the pilot-scale production of an ice-binding protein by fed-batch culture of Pichia pastoris . Appl Microbiol Biotechnol 97, 3383–3393 (2013). https://doi.org/10.1007/s00253-012-4594-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4594-y

Keywords

Navigation