Skip to main content
Log in

Increasing oxidative stress tolerance and subculturing stability of Cordyceps militaris by overexpression of a glutathione peroxidase gene

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Like other filamentous fungi, the medicinal ascomycete Cordyceps militaris frequently degenerates during continuous maintenance in culture by showing loss of the ability to reproduce sexually or asexually. Degeneration of fungal cultures has been related with cellular accumulation of reactive oxygen species (ROS). In this study, an antioxidant glutathione peroxidase (Gpx) gene from Aspergillus nidulans was engineered into two C. militaris strains, i.e., the Cm01 strain which can fruit normally and the Cm04 strain which has lost the ability to form fruiting bodies on different media through subculturing. The results showed that the mitotically stable mutants had higher Gpx activities and stronger capacity to scavenge cellular ROS than their parental strains. Most significantly, the fruiting ability of Cm04 strain was restored by overexpression of the antioxidant enzyme. However, after being successively transferred for up to ten generations, two of three Cm04 mutants again lost the ability to fruit on insect pupae while Cm01 transformants remained fertile. This study confirms the relationship between fungal culture degeneration and cellular ROS accumulation. Our results indicate that genetic engineering with an antioxidant gene can be an effective way to reverse fungal degeneration during subculturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avery AM, Avery SV (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276:33730–33735

    Article  CAS  Google Scholar 

  • Butt TM, Wang CS, Shah FA, Hall R (2006) Degeneration of entomogenous fungi. In: Eilenberg J, Hokkanen H (eds) An ecological and societal approach to biological control. Springer, The Netherlands, pp 213–226

    Chapter  Google Scholar 

  • Dawe AL, Nuss DL (2001) Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annu Rev Genet 35:1–29

    Article  CAS  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Baştürkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D’Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Peñalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    Article  CAS  Google Scholar 

  • Geydan TD, Debets AJ, Verkley GJ, Van Diepeningen AD (2012) Correlated evolution of senescence and ephemeral substrate use in the Sordariomycetes. Mol Ecol 21:2816–2828

    Article  Google Scholar 

  • Haedens V, Malagnac F, Silar P (2005) Genetic control of an epigenetic cell degeneration syndrome in Podospora anserina. Fungal Genet Biol 42:564–477

    Article  CAS  Google Scholar 

  • Herbette S, de Labrouhe DT, Drevet JR, Roeckel-Drevet P (2011) Transgenic tomatoes showing higher glutathione peroxydase antioxidant activity are more resistant to an abiotic stress but more susceptible to biotic stresses. Plant Sci 180:548–553

    Article  CAS  Google Scholar 

  • Horgen PA, Carvalho D, Sonnenberg A, Li A, van Griensven LJLD (1996) Chromosomal abnormalities associated with strain degeneration in the cultivated mushroom Agaricus bisporus. Fungal Genet Biol 20:229–241

    Article  CAS  Google Scholar 

  • Imai H, Nakagawa Y (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med 34:145–169

    Article  CAS  Google Scholar 

  • Kim DH (1997) Induced change in DNA methylation of Fusarium oxysporum f. sp. niveum due to successive transfer. J Biochem Mol Biol 30:216–221

    CAS  Google Scholar 

  • Li A, Begin M, Kokurewicz K, Bowden C, Horgen PA (1994) Inheritance of strain instability (sectoring) in the commercial button mushroom Agaricus bisporus. Appl Environ Microbiol 60:2384–2388

    Article  CAS  Google Scholar 

  • Li L, Pischetsrieder M, St Leger RJ, Wang CS (2008) Associated links among mtDNA glycation, oxidative stress and colony sectoriza-tion in Metarhizium anisopliae. Fungal Genet Biol 45:1300–1306

    Google Scholar 

  • Lu D, Pava-Ripoll M, Li Z, Wang CS (2008) Insecticidal evaluation of Beauveria bassiana engineered to express a scorpion neurotoxin and a cuticle degrading protease. Appl Microbiol Biotechnol 81:515–522

    Article  CAS  Google Scholar 

  • Maas MF, van Mourik A, Hoekstra RF, Debets AJ (2005) Polymorphism for pKALILO based senescence in Hawaiian populations of Neurospora intermedia and Neurospora tetrasperma. Fungal Genet Biol 42:224–232

    Article  CAS  Google Scholar 

  • Magae Y, Akahane K, Nakamura K, Tsunoda S (2005) Simple colorimetric method for detecting degenerate strains of the cultivated basidiomycete Flammulina velutipes (Enokitake). Appl Environ Microbiol 71:6388–6389

    Article  CAS  Google Scholar 

  • Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–2700

    Article  Google Scholar 

  • Missall TA, Cherry-Harris JF, Lodge JK (2005) Two glutathione peroxidases in the fungal pathogen Cryptococcus neoformans are expressed in the presence of specific substrates. Microbiology 151:2573–2581

    Article  CAS  Google Scholar 

  • Muthukumar K, Rajakumar S, Sarkar MN, Nachiappan V (2011) Glutathione peroxidase3 of Saccharomyces cerevisiae protects phospholipids during cadmium-induced oxidative stress. Antonie van Leeuwenhoek 99:761–771

    Article  CAS  Google Scholar 

  • Osiewacz HD (2011) Mitochondrial quality control in aging and lifespan control of the fungal aging model Podospora anserina. Biochem Soc Trans 39:1488–1492

    Article  CAS  Google Scholar 

  • Paterson RR (2008) Cordyceps: a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69:469–1495

    Article  Google Scholar 

  • Qiu L, Li Y, Liu Y, Gao Y, Qi Y, Shen J (2010) Particle and naked RNA mycoviruses in industrially cultivated mushroom Pleurotus ostreatus in China. Fungal Biol 114:507–513

    Article  CAS  Google Scholar 

  • Ryan MJ, Bridge PD, Smith D, Jeffries P (2002) Phenotypic degeneration occurs during sector formation in Metarhizium anisopliae. J Appl Microbiol 93:163–168

    Article  CAS  Google Scholar 

  • Shah FA, Wang CS, Butt TM (2005) Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 251:259–266

    Article  CAS  Google Scholar 

  • Sung GH, Hywel-Jones NL, Sung JM, Luangsa-Ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57:5–59

    Article  Google Scholar 

  • Toppo S, Flohé L, Ursini F, Vanin S, Maiorino M (2009) Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. Biochim Biophys Acta 1790:486–1500

    Article  Google Scholar 

  • van Diepeningen AD, Debets AJM, Hoekstra RF (2006) Dynamics of dsRNA mycoviruses in black Aspergillus populations. Fungal Genet Biol 43:446–452

    Article  Google Scholar 

  • Wang CS, St Leger RJ (2006) A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci U S A 103:6647–6652

    Article  CAS  Google Scholar 

  • Wang CS, Skrobek A, Butt TM (2003) Concurrence of losing a chromosome and the ability to produce destruxins in a mutant of Metarhizium anisopliae. FEMS Microbiol Lett 226:373–378

    Article  CAS  Google Scholar 

  • Wang CS, Butt TM, St Leger RJ (2005) Colony sectorization of Metarhizium anisopliae is a sign of ageing. Microbiology 151:3223–3236

    Article  CAS  Google Scholar 

  • Xiao JH, Zhong JJ (2007) Secondary metabolites from Cordyceps species and their antitumor activity studies. Recent Pat Biotechnol 1:123–137

    Article  CAS  Google Scholar 

  • Xiong CH, Xia YL, Zheng P, Shi SH, Wang CS (2010) Developmental stage-specific gene expression profiling for a medicinal fungus Cordyceps militaris. Mycology 1:25–66

    CAS  Google Scholar 

  • Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang S, Zhao GP, Liu X, St Leger RJ, Wang CS (2011a) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 12:R116

    Article  CAS  Google Scholar 

  • Zheng Z, Huang C, Cao L, Xie C, Han R (2011b) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol 115:65–274

    Google Scholar 

Download references

Acknowledgments

This study was supported by Natural Science Foundation of China (30970034) and the Science and Technology Commission of Shanghai Municipality (grant no. 08DZ1970200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengshu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, C., Xia, Y., Zheng, P. et al. Increasing oxidative stress tolerance and subculturing stability of Cordyceps militaris by overexpression of a glutathione peroxidase gene. Appl Microbiol Biotechnol 97, 2009–2015 (2013). https://doi.org/10.1007/s00253-012-4286-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4286-7

Keywords

Navigation