Skip to main content
Log in

Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Klebsiella species are the most extensively studied among a number of 2,3-butanediol (2,3-BDO)-producing microorganisms. The ability to metabolize a wide variety of substrates together with the ease of cultivation made this microorganisms particularly promising for the application in industrial-scale production of 2,3-BDO. However, the pathogenic characteristics of encapsulated Klebsiella species are considered to be an obstacle hindering their industrial applications. Here, we removed the virulence factors from three 2,3-BDO-producing strains, Klebsiella pneumoniae KCTC 2242, Klebsiella oxytoca KCTC1686, and K. oxytoca ATCC 43863 through site-specific recombination technique. We generated deletion mutation in wabG gene encoding glucosyltransferase which plays a key role in the synthesis of outer core lipopolysaccharides (LPS) by attaching the first outer core residue d-GalAp to the O-3 position of the l,d-HeppII residue. The morphologies and adhesion properties against epithelial cells were investigated, and the results indicated that the wabG mutant strains were devoid of the outer core LPS and lost the ability to retain capsular structure. The time profile of growth and 2,3-BDO production from K. pneumoniae KCTC 2242 and K. pneumoniae KCTC 2242 ΔwabG were analyzed in batch culture with initial glucose concentration of 70 g/l. The growth was not affected by disrupting wabG gene, but the production of 2,3-BDO decreased from 31.27 to 22.44 g/l in mutant compared with that of parental strain. However, the productions of acetoin and lactate from wabG mutant strain were negligible, whereas that from parental strain reached to ~5 g/l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alberti S, Alvarez D, Merino S, Casado MT, Vivanco F, Tomas JM, Benedi VJ (1996) Analysis of complement C3 deposition and degradation on Klebsiella pneumoniae. Infect Immun 64:4726–4732

    CAS  Google Scholar 

  • Anderson RL, Wood WA (1962) Pathway of l-xylose and l-lyxose degradation in Aerobacter aerogenes. J Biol Chem 287:296–303

    Google Scholar 

  • Bennette CJ, Young MN, Darrington H (1995) Differences in urinary tract infection in male and femail spinal cord injury patients on intermittent catheterzation. Paraplegia 33:69–72

    Article  Google Scholar 

  • Carpenter JL (1990) Klebsiella pulmonary infections: occurence at one medical center and review. Rev Infect Dis 12:672–682

    Article  CAS  Google Scholar 

  • Cho J-H, Rathnasingh C, Song H, Chung B-W, Lee HJ, Seung D (2012) Fermentation and evaluation of Klebsiella pneumoniae and K. oxytoca on the production of 2,3-butanediol. Bioproc Biosyst Eng. doi:10.1007/s00449-012-0691-7

  • Clements A, Gaboriaud F, Duval JFL, Farn JL, Jenney AW, Lithgow T, Wijburg OLC, Hartland EL, Strugnell RA (2008) The major surface-associated sacharides of Klebsiella pneumoniae contribute to host cell association. PLoS One 3(11):e3817

    Article  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS 97(12):6640–6645

    Article  CAS  Google Scholar 

  • Emerson RR, Flickinger MC, Tsao GT (1982) Kinetics of dehydration of aqueous 2,3-butanediol to methyl ethyl ketone. Ind Eng Chem Prod Res Dev 21:473–477

    Article  CAS  Google Scholar 

  • Farvre-Bonte S, Lichr TR, Forestier C, Krogfelt KA (1999) Klebsiella pneumoniae capsule expression is necessary for colonization of large intestines of streptomycin-treated mice. Infect Immun 67:6152–6156

    Google Scholar 

  • Favre-Bonte S, Joly B, Forestier C (1999) Consequences of reduction of Klebsiella pneumoniae capsule expression in interaction this bacterium with epithelial cells. Infect Immun 67(2):554–561

    CAS  Google Scholar 

  • Fournet-Fayard S, Joly B, Forestier C (1995) Transformation of wild type Klebsiella pnenumoniae with plasmid DNA by clectroporation. J Microbiol Methods 24:49–54

    Article  Google Scholar 

  • Garg SK, Jain A (1995) Fermentative production of 2,3-butanediol: a review. Bioresour Technol 51:103–109

    Article  CAS  Google Scholar 

  • Hsieh PF, Lin TL, Yang FL, Wu MC, Pan YJ, Wu SH, Wang JT (2012) Lipopolysaccharide O1 antigen contributes to the virulence in Klebsiella pneumoniae causing pyogenic liver abscess. PLoS One 7:e33155

    Article  CAS  Google Scholar 

  • Izquierdo L, Coderch N, Pique N, Bedini E, Corsaro M, Merino S, Fresno S, Tomas JM, Regue M (2003) The Klebsiella pnenumoniae wabG gene: role in biosynthesis of the core lypopolysaccharide and virulence. J Bacteriol 185(24):7213–7221

    Article  CAS  Google Scholar 

  • Jansen NB, Flickinger MC, Tsao GT (1983) Production of 2,3-butanediol from d-Xylose by Klebsiella oxytoca ATCC 8724. Biotechnol Bioeng 26:362–369

    Article  Google Scholar 

  • Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364

    Article  CAS  Google Scholar 

  • Klemm P, Schembri MA (2000) Bacterial adhesins: function and structure. Int J Med Microbiol 290:27–35

    Article  CAS  Google Scholar 

  • Link AJ, Phillips D, Church GM (1997) Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179:6228–6237

    CAS  Google Scholar 

  • Long SK, Patrick R (1963) The present status of the 2,3-butylene glycol fermentation. Adv Appl Microbiol 5:135–155

    Article  CAS  Google Scholar 

  • Lye WC, Chan RKT, Lee EJC, Kumarasinghe G (1992) Urinary tract infections in patients with diabetes mellitus. J Infect 24:169–174

    Article  CAS  Google Scholar 

  • Maatov R, Ofek I, Skutelsky E, Schechter I, Perry R, Posdchun R, Sahly H, Thankavel K, Abraham SN, Goldhar J (1999) Inability of encapsulated Klebeiella pneumoniae to assemble functional type 1 fimbriae on their surface. FEMS Microbiol Lett 179:123–130

    Article  CAS  Google Scholar 

  • Merino S, Camprubi S, Alerti S, Benedi VJ, Tomas JM (1992) Mechanisms of Klebsiella pneumoniae resistance to complement-mediated killing. Infect Immun 60:2529–2535

    CAS  Google Scholar 

  • Monson BK, Stringham J, Jones BB, Abdel-Aziz S, Cutler Peck CM, Olson RJ (2010) Scanning electron microscopy visualization of methicillin-resistant Staphylococcus aureus after contact with gatifloxacin with and without preservative. J Ocul Pharmacol Ther 26(2):133–136

    Article  CAS  Google Scholar 

  • Pizarro-Cerda J, Cossart P (2006) Bacterial adhesion and entry into host cells. Cell 124:715–727

    Article  CAS  Google Scholar 

  • Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenecity factors. Clin Microbiol Rew 11(4):589–603

    CAS  Google Scholar 

  • Sahly H, Podschun R, Oelschlarger TA, Greiwe M, Parolis H, Hasty D, Kekow J, Ullmann U, Ofek I, Sela S (2000) Capsule impedes adhesion to invasion of epithelial cells by Klebsiella pnenumoniae. Infect Immun 68(12):6744–6749

    Article  CAS  Google Scholar 

  • Schembri MA, Dalsgaard D, Klemm P (2004) Capsule shields the function of short bacterial adhesins. J Bacteriol 186(5):1249–1257

    Article  CAS  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Shirmer A, McClure A, del Cardayre SB, Deasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    Article  CAS  Google Scholar 

  • Stinson SC (1979) New plants set for octane booster. Chem Eng News 57(26):35–36

    Article  Google Scholar 

  • Struve C, Krogfelt KA (2003) Role of capsule in Klebsiell pneumoniae vitulence: lack of correlation between in vitro and in vivo studies. FEMS Microbiol Lett 218:149–154

    Article  CAS  Google Scholar 

  • Tomas JM, Benedi VJ, Ciurana B, Jofre J (1986) Role of capsule and O antigen in resistance of Klebsiella pneumoniae to serum bactericidal activity. Infect Immun 54:85–89

    CAS  Google Scholar 

  • Tsai CM, Frasch CE (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119

    Article  CAS  Google Scholar 

  • Williams P, Tomas JM (1990) The pathogenicity of Klebsiella pneumoniae. Rev Med Microbiol 1:196–204

    Google Scholar 

  • Winfield ME (1945) The catalytic dehydration of 2,3-butanediol to 1,3-butadien. J Council Sci Ind Res 18:412–423

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the R&D Program of MKE/KEIT (No. 10035578, Development of 2,3-butanediol and derivative production technology for the C-Zero bio-platform industry).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Rok Kim.

Additional information

Sung-Geun Jung and Jun-Ho Jang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material

(DOCX 155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, SG., Jang, JH., Kim, AY. et al. Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene. Appl Microbiol Biotechnol 97, 1997–2007 (2013). https://doi.org/10.1007/s00253-012-4284-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4284-9

Keywords

Navigation