Skip to main content
Log in

Improving the affinity and activity of CYP101D2 for hydrophobic substrates

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

CYP101D2 is a cytochrome P450 monooxygenase from Novosphingobium aromaticivorans which is closely related to CYP101A1 (P450cam) from Pseudomonas putida. Both enzymes selectively hydroxylate camphor to 5-exo-hydroxycamphor, and the residues that line the active sites of both enzymes are similar including the pre-eminent Tyr96 residue. However, Met98 and Leu253 in CYP101D2 replace Phe98 and Val247 in CYP101A1, and camphor binding only results in a maximal change in the spin state to 40 % high-spin. Substitutions at Tyr96, Met98 and Leu253 in CYP101D2 reduced both the spin state shift on camphor binding and the camphor oxidation activity. The Tyr96Ala mutant increased the affinity of CYP101D2 for hydrocarbon substrates including adamantane, cyclooctane, hexane and 2-methylpentane. The monooxygenase activity of the Tyr96Ala variant towards alkane substrates was also enhanced compared with the wild-type enzyme. The crystal structure of the substrate-free form of this variant shows the enzyme in an open conformation (PDB: 4DXY), similar to that observed with the wild-type enzyme (PDB: 3NV5), with the side chain of Ala96 pointing away from the heme. Despite this, the binding and activity data suggest that this residue plays an important role in substrate binding, evidencing that the enzyme probably undergoes catalysis in a more closed conformation, similar to those observed in the crystal structures of CYP101A1 (PDB: 2CPP) and CYP101D1 (PDB: 3LXI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atkins WM, Sligar SG (1988) The roles of active site hydrogen bonding in cytochrome P-450cam as revealed by site-directed mutagenesis. J Biol Chem 263:18842–18849

    CAS  Google Scholar 

  • Bell SG, Wong LL (2007) P450 enzymes from the bacterium Novosphingobium aromaticivorans. Biochem Biophys Res Commun 360:666–672

    Article  CAS  Google Scholar 

  • Bell SG, Rouch DA, Wong LL (1997) Selective aliphatic and aromatic carbon-hydrogen bond activation catalysed by mutants of cytochrome P450(cam). J Mol Catal B-Enzym 3:293–302

    Article  CAS  Google Scholar 

  • Bell SG, Harford-Cross CF, Wong LL (2001a) Engineering the CYP101 system for in vivo oxidation of unnatural substrates. Protein Eng 14:797–802

    Article  CAS  Google Scholar 

  • Bell SG, Sowden RJ, Wong L-L (2001b) Engineering the haem monooxygenase cytochrome P450cam for monoterpene oxidation. Chem Commun 635–636. doi:10.1039/B100290M

  • Bell SG, Stevenson JA, Boyd HD, Campbell S, Riddle AD, Orton EL, Wong LL (2002) Butane and propane oxidation by engineered cytochrome P450cam. Chem Commun 490–491. doi:10.1039/B110957J

  • Bell SG, Chen X, Sowden RJ, Xu F, Williams JN, Wong LL, Rao Z (2003a) Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam. J Am Chem Soc 125:705–714

    Article  CAS  Google Scholar 

  • Bell SG, Chen X, Xu F, Rao Z, Wong LL (2003b) Engineering substrate recognition in catalysis by cytochrome P450cam. Biochem Soc Trans 31:558–562

    Article  CAS  Google Scholar 

  • Bell SG, Orton E, Boyd H, Stevenson JA, Riddle A, Campbell S, Wong LL (2003c) Engineering cytochrome P450cam into an alkane hydroxylase. Dalton Trans 2133–2140. doi:10.1039/B300869J

  • Bell SG, Hoskins N, Whitehouse CJC, Wong LL (2007) Design and engineering of cytochrome P450 systems, In: Sigel A, Sigel H, Sigel RKO (eds) The ubiquitous roles of cytochrome P450 proteins: metal ions in life sciences vol. 3 1st ed. John Wiley & Sons, Chichester, UK, pp 437–476

  • Bell SG, Dale A, Rees NH, Wong LL (2010) A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans. Appl Microbiol Biotechnol 86:163–175

    Article  CAS  Google Scholar 

  • Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145

    Article  CAS  Google Scholar 

  • Chen X, Christopher A, Jones JP, Bell SG, Guo Q, Xu F, Rao Z, Wong LL (2002) Crystal structure of the F87W/Y96F/V247L mutant of cytochrome P-450cam with 1,3,5-trichlorobenzene bound and further protein engineering for the oxidation of pentachlorobenzene and hexachlorobenzene. J Biol Chem 277:37519–37526

    Article  CAS  Google Scholar 

  • Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D: Biol Crystallogr 66:12–21

    Article  Google Scholar 

  • Cryle MJ, Stok JE, De Voss JJ (2003) Reactions catalyzed by bacterial cytochromes P 450. Aust J Chem 56:749–762

    Article  CAS  Google Scholar 

  • Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D: Biol Crystallogr 60:2126–2132

    Article  Google Scholar 

  • Engh RA, Huber R (1991) Accurate bond and angle parameters for X-ray protein structure refinement. Acta Cryst A47:392–400

    Google Scholar 

  • England PA, Rouch DA, Westlake ACG, Bell SG, Nickerson DP, Webberley M, Flitsch SL, Wong LL (1996) Aliphatic vs aromatic C-H bond activation of phenylcyclohexane catalysed by cytochrome P450cam. Chem Commun 357–358. doi:10.1039/CC9960000357

  • England PA, Harford-Cross CF, Stevenson JA, Rouch DA, Wong LL (1998) The oxidation of naphthalene and pyrene by cytochrome P450(cam). FEBS Lett 424:271–274

    Article  CAS  Google Scholar 

  • Fowler SM, England PA, Westlake ACG, Rouch DR, Nickerson DP, Blunt C, Braybrook D, West S, Wong LL, Flitsch SL (1994) Cytochrome P-450(CAM) monooxygenase can be redesigned to catalyze the regioselective aromatic hydroxylation of diphenylmethane. Chem Commun 2761–2762

  • Fredrickson JK, Brockman FJ, Workman DJ, Li SW, Stevens TO (1991) Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds. Appl Environ Microbiol 57:796–803

    CAS  Google Scholar 

  • Fredrickson JK, Balkwill DL, Drake GR, Romine MF, Ringelberg DB, White DC (1995) Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl Environ Microbiol 61:1917–1922

    CAS  Google Scholar 

  • Fredrickson JK, Balkwill DL, Romine MF, Shi T (1999) Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp. J Ind Microbiol Biotechnol 23:273–283

    Article  CAS  Google Scholar 

  • Grogan G (2011) Cytochromes P450: exploiting diversity and enabling application as biocatalysts. Curr Opin Chem Biol 15:241–248

    Article  CAS  Google Scholar 

  • Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:611–650

    Article  CAS  Google Scholar 

  • Harford-Cross CF, Carmichael AB, Allan FK, England PA, Rouch DA, Wong LL (2000) Protein engineering of cytochrome p450(cam) (CYP101) for the oxidation of polycyclic aromatic hydrocarbons. Protein Eng 13:121–128

    Article  CAS  Google Scholar 

  • Hayashi T, Harada K, Sakurai K, Shimada H, Hirota S (2009) A role of the heme-7-propionate side chain in cytochrome P450cam as a gate for regulating the access of water molecules to the substrate-binding site. J Am Chem Soc 131:1398–1400

    Article  CAS  Google Scholar 

  • Isin EM, Guengerich FP (2007) Complex reactions catalyzed by cytochrome P450 enzymes. Biochim Biophys Acta 1770:314–329

    Article  CAS  Google Scholar 

  • Jones JP, O'Hare EJ, Wong LL (2001) Oxidation of polychlorinated benzenes by genetically engineered CYP101 (cytochrome P450(cam)). Eur J Biochem 268:1460–1467

    Article  CAS  Google Scholar 

  • Kadkhodayan S, Coulter ED, Maryniak DM, Bryson TA, Dawson JH (1995) Uncoupling oxygen transfer and electron transfer in the oxygenation of camphor analogues by cytochrome P450-CAM. Direct observation of an intermolecular isotope effect for substrate C-H activation. J Biol Chem 270:28042–28048

    Article  CAS  Google Scholar 

  • Katagiri M, Ganguli BN, Gunsalus IC (1968) A soluble cytochrome P-450 functional in methylene hydroxylation. J Biol Chem 243:3543–3546

    CAS  Google Scholar 

  • Lee YT, Wilson RF, Rupniewski I, Goodin DB (2010) P450cam visits an open conformation in the absence of substrate. Biochemistry 49:3412–3419

    Article  CAS  Google Scholar 

  • Loida PJ, Sligar SG (1993) Molecular recognition in cytochrome P-450: mechanism for the control of uncoupling reactions. Biochemistry 32:11530–11538

    Article  CAS  Google Scholar 

  • Ma M, Bell SG, Yang W, Hao Y, Rees NH, Bartlam M, Zhou W, Wong LL, Rao Z (2011) Structural analysis of CYP101C1 from Novosphingobium aromaticivorans DSM12444. ChemBioChem 12:88–99

    Article  CAS  Google Scholar 

  • Manna SK, Mazumdar S (2010) Tuning the substrate specificity by engineering the active site of cytochrome P450cam: a rational approach. Dalton Trans 39:3115–3123

    Article  CAS  Google Scholar 

  • McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  Google Scholar 

  • Monti D, Ottolina G, Carrea G, Riva S (2011) Redox reactions catalyzed by isolated enzymes. Chem Rev 111:4111–4140

    Article  CAS  Google Scholar 

  • Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D: Biol Crystallogr 53:240–255

    Article  CAS  Google Scholar 

  • Nickerson DP, Harford-Cross CF, Fulcher SR, Wong LL (1997) The catalytic activity of cytochrome P450(cam) towards styrene oxidation is increased by site-specific mutagenesis. FEBS Lett 405:153–156

    Article  CAS  Google Scholar 

  • Oprea TI, Hummer G, Garcia AE (1997) Identification of a functional water channel in cytochrome P450 enzymes. Proc Natl Acad Sci U S A 94:2133–2138

    Article  CAS  Google Scholar 

  • Ortiz de Montellano PR (ed) (2005) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Press, New York

    Google Scholar 

  • Otwinowski ZWM (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  • Poulos TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195:687–700

    Article  CAS  Google Scholar 

  • Raag R, Poulos TL (1991) Crystal structures of cytochrome P-450CAM complexed with camphane, thiocamphor, and adamantane: factors controlling P-450 substrate hydroxylation. Biochemistry 30:2674–2684

    Article  CAS  Google Scholar 

  • Robin A, Kohler V, Jones A, Ali A, Kelly PP, O'Reilly E, Turner NJ, Flitsch SL (2011) Chimeric self-sufficient P450cam-RhFRed biocatalysts with broad substrate scope. Beilstein J Org Chem 7:1494–1498

    Article  CAS  Google Scholar 

  • Romine MF, Fredrickson JK, Li SM (1999a) Induction of aromatic catabolic activity in Sphingomonas aromaticivorans strain F199. J Ind Microbiol Biotechnol 23:303–313

    Article  CAS  Google Scholar 

  • Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK, Saffer JD (1999b) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Savino C, Montemiglio LC, Sciara G, Miele AE, Kendrew SG, Jemth P, Gianni S, Vallone B (2009) Investigating the structural plasticity of a cytochrome P450: three-dimensional structures of P450 EryK and binding to its physiological substrate. J Biol Chem 284:29170–29179

    Article  CAS  Google Scholar 

  • Scott EE, He YA, Wester MR, White MA, Chin CC, Halpert JR, Johnson EF, Stout CD (2003) An open conformation of mammalian cytochrome P450 2B4 at 1.6-A resolution. Proc Natl Acad Sci USA 100:13196–13201

    Article  CAS  Google Scholar 

  • Sigel A, Sigel H, Sigel R (ed) (2007) The ubiquitous roles of cytochrome P450 proteins, 1st ed. John Wiley & Sons, Chichester, UK

  • Sowden RJ, Yasmin S, Rees NH, Bell SG, Wong LL (2005) Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450(cam) and P450(BM-3). Org Biomol Chem 3:57–64

    Article  CAS  Google Scholar 

  • Speight RE, Hancock FE, Winkel C, Bevinakatti HS, Sarkar M, Flitsch SL, Turner NJ (2004) Rapid identification of cytochrome P450(cam) variants by in vivo screening of active site libraries. Tetrahedron-Asymmetry 15:2829–2831

    Article  CAS  Google Scholar 

  • Stevenson JA, Westlake ACG, Whittock C, Wong LL (1996) The catalytic oxidation of linear and branched alkanes by cytochrome P450(cam). J Am Chem Soc 118:12846–12847

    Article  CAS  Google Scholar 

  • Stevenson JA, Bearpark JK, Wong LL (1998) Engineering molecular recognition in alkane oxidation catalysed by cytochrome P450(cam). New J Chem 22:551–552

    Article  CAS  Google Scholar 

  • Weber E, Seifert A, Antonovici M, Geinitz C, Pleiss J, Urlacher VB (2011) Screening of a minimal enriched P450 BM3 mutant library for hydroxylation of cyclic and acyclic alkanes. Chem Commun 47:944–946

    Article  CAS  Google Scholar 

  • White RE, McCarthy MB, Egeberg KD, Sligar SG (1984) Regioselectivity in the cytochromes P-450: control by protein constraints and by chemical reactivities. Arch Biochem Biophys 228:493–502

    Article  CAS  Google Scholar 

  • Whitehouse CJ, Bell SG, Wong LL (2012) P450(BM3) (CYP102A1): connecting the dots. Chem Soc Rev 41:1218–1260

    Article  CAS  Google Scholar 

  • Williams JW, Morrison JF (1979) The kinetics of reversible tight-binding inhibition. Methods Enzymol 63:437–467

    Article  CAS  Google Scholar 

  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D: Biol Crystallogr 67:235–242

    Google Scholar 

  • Xu F, Bell SG, Lednik J, Insley A, Rao Z, Wong LL (2005) The heme monooxygenase cytochrome P450cam can be engineered to oxidize ethane to ethanol. Angew Chem Int Ed Engl 44:4029–4032

    Article  CAS  Google Scholar 

  • Yang W, Bell SG, Wang H, Zhou W, Hoskins N, Dale A, Bartlam M, Wong LL, Rao Z (2010) Molecular characterization of a class I P450 electron transfer system from Novosphingobium aromaticivorans DSM12444. J Biol Chem 285:27372–27384

    Article  CAS  Google Scholar 

  • Yang W, Bell SG, Wang H, Zhou W, Bartlam M, Wong LL, Rao Z (2011) The structure of CYP101D2 unveils a potential path for substrate entry into the active site. Biochem J 433:85–93

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen G. Bell, Weihong Zhou or Luet-Lok Wong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1290 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, S.G., Yang, W., Dale, A. et al. Improving the affinity and activity of CYP101D2 for hydrophobic substrates. Appl Microbiol Biotechnol 97, 3979–3990 (2013). https://doi.org/10.1007/s00253-012-4278-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4278-7

Keywords

Navigation