Skip to main content
Log in

Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Formate dehydrogenases (FDHs) are frequently used for the regeneration of cofactors in biotransformations employing NAD(P)H-dependent oxidoreductases. Major drawbacks of most native FDHs are their strong preference for NAD+ and their low operational stability in the presence of reactive organic compounds such as α-haloketones. In this study, the FDH from Mycobacterium vaccae N10 (MycFDH) was engineered in order to obtain an enzyme that is not only capable of regenerating NADPH but also stable toward the α-haloketone ethyl 4-chloroacetoacetate (ECAA). To change the cofactor specificity, amino acids in the conserved NAD+ binding motif were mutated. Among these mutants, MycFDH A198G/D221Q had the highest catalytic efficiency (k cat/K m) with NADP+. The additional replacement of two cysteines (C145S/C255V) not only conferred a high resistance to ECAA but also enhanced the catalytic efficiency 6-fold. The resulting quadruple mutant MycFDH C145S/A198G/D221Q/C255V had a specific activity of 4.00 ± 0.13 U mg−1 and a K +m, NADP of 0.147 ± 0.020 mM at 30 °C, pH 7. The A198G replacement had a major impact on the kinetic constants of the enzyme. The corresponding triple mutant, MycFDH C145S/D221Q/C255V, showed the highest specific activity reported to date for a NADP+-accepting FDH (v max, 10.25 ± 1.63 U mg−1). However, the half-saturation constant for NADP+ (K +m, NADP , 0.92 ± 0.10 mM) was about one order of magnitude higher than the one of the quadruple mutant. Depending on the reaction setup, both novel MycFDH variants could be useful for the production of the chiral synthon ethyl (S)-4-chloro-3-hydroxybutyrate [(S)-ECHB] by asymmetric reduction of ECAA with NADPH-dependent ketoreductases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andreadeli A, Platis D, Tishkov VI, Popov VO, Labrou NE (2008) Structure-guided alteration of coenzyme specificity of formate dehydrogenase by saturation mutagenesis to enable efficient utilization of NADP+. FEBS J 275:3859–3869

    Article  CAS  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  • Asano Y, Sekigawa T, Inukai M, Nakazawa A (1988) Purification and properties of formate dehydrogenase from Moraxella sp. strain C-1. J Bacteriol 170:3189–3193

    CAS  Google Scholar 

  • Bisswanger (2008) Enzyme kinetics, 2nd edn. Wiley, Weinheim, p 120

    Book  Google Scholar 

  • Bräutigam S, Bringer-Meyer S, Weuster-Botz D (2007) Asymmetric whole cell biotransformations in biphasic ionic liquid/water-systems by use of recombinant Escherichia coli with intracellular cofactor regeneration. Tetrahedron-Asymmetry 18:1883–1887

    Article  Google Scholar 

  • Carugo O, Argos P (1997a) NADP-dependent enzymes. I: conserved stereochemistry of cofactor binding. Proteins 28:10–28

    Article  CAS  Google Scholar 

  • Carugo O, Argos P (1997b) NADP-dependent enzymes. II: evolution of the mono- and dinucleotide binding domains. Proteins 28:29–40

    Article  CAS  Google Scholar 

  • Eisenthal R, Danson MJ, Hough DW (2007) Catalytic efficiency and kcat/KM: a useful comparator? Trends Biotechnol 25:247–249

    Article  CAS  Google Scholar 

  • Fischer T, Pietruszka J (2010) Key building blocks via enzyme-mediated synthesis. Top Curr Chem 297:1–43

    Article  CAS  Google Scholar 

  • Galkin A, Kulakova L, Tishkov V, Esaki N, Soda K (1995) Cloning of formate dehydrogenase gene from a methanol-utilizing bacterium Mycobacterium vaccae N10. Appl Microbiol Biotechnol 44:479–483

    Article  CAS  Google Scholar 

  • Gul-Karaguler N, Sessions RB, Clarke AR, Holbrook J (2001) A single mutation in the NAD-specific formate dehydrogenase from Candida methylica allows the enzyme to use NADP. Biotechnol Lett 23:283–287

    Article  CAS  Google Scholar 

  • Hatrongjit R, Packdibamrung K (2010) A novel NADP+-dependent formate dehydrogenase from Burkholderia stabilis 15516: screening, purification and characterization. Enzyme Microb Tech 46:557–561

    Article  CAS  Google Scholar 

  • Hölsch K, Weuster-Botz D (2010a) New oxidoreductases from cyanobacteria: exploring nature’s diversity. Enzyme Microb Tech 47:228–235

    Article  Google Scholar 

  • Hölsch K, Weuster-Botz D (2010b) Enantioselective reduction of prochiral ketones by engineered bifunctional fusion proteins. Biotechnol Appl Biochem 56:131–140

    Article  Google Scholar 

  • Lamzin VS, Aleshin AE, Strokopytov BV, Yukhnevich MG, Popov VO (1992) Crystal structure of NAD-dependent formate dehydrogenase. Eur J Biochem 206:1011–1014

    Article  Google Scholar 

  • Lamzin VS, Dauter Z, Popov VO, Harutyunyan EH, Wilson KS (1994) High resolution structures of holo and apo formate dehydrogenase. J Mol Biol 236:759–785

    Article  CAS  Google Scholar 

  • Ma SK, Gruber J, Davis C, Newman L, Gray D, Wang A, Grate J, Huisman GW, Sheldon RA (2010) A green-by-design biocatalytic process for atorvastatin intermediate. Green Chem 12:81–86

    Article  CAS  Google Scholar 

  • Nanba H, Takaoka Y, Hasegawa J (2003) Purification and characterization of an α-haloketone-resistant formate dehydrogenase from Thiobacillus sp. strain KNK65MA, and cloning of the gene. Biosci Biotechnol Biochem 67:2145–2153

    Article  CAS  Google Scholar 

  • Olson BJ, Skavdahl M, Ramberg H, Osterman JC, Markwell J (2000) Formate dehydrogenase in Arabidopsis thaliana: characterization and possible targeting to the chloroplast. Plant Sci 159:205–212

    Article  CAS  Google Scholar 

  • Pereira R (1998) The use of baker’s yeast in the generation of asymmetric centers to produce chiral drugs and other compounds. Crit Rev Biotechnol 18:25–64

    Article  Google Scholar 

  • Popov VO, Lamzin VS (1994) NAD+-dependent formate dehydrogenase. Biochem J 301:625–643

    CAS  Google Scholar 

  • Schütte H, Flossdorf J, Sahm H, Kula MR (1976) Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii. Eur J Biochem 62:151–160

    Article  Google Scholar 

  • Serov AE, Popova AS, Fedorchuk VV, Tishkov VI (2002) Engineering of coenzyme specificity of formate dehydrogenase from Saccharomyces cerevisiae. Biochem J 367:841–847

    Article  CAS  Google Scholar 

  • Shimizu S, Kataoka M, Katoh M, Morikawa T, Miyoshi T, Yamada H (1990) Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by a microbial aldehyde reductase in an organic solvent–water diphasic system. Appl Environ Microbiol 56:2374–2377

    CAS  Google Scholar 

  • Slusarczyk H, Felber S, Kula MR, Pohl M (2000) Stabilization of NAD-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues. Eur J Biochem 267:1280–1289

    Article  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  • Tishkov VI, Popov VO (2004) Catalytic mechanism and application of formate dehydrogenase. Biochem Mosc 69:1252–1267

    Article  CAS  Google Scholar 

  • Tishkov VI, Popov VO (2006) Protein engineering of formate dehydrogenase. Biomol Eng 23:89–110

    Article  CAS  Google Scholar 

  • Tishkov VI, Galkin AG, Marchenko GN, Egorova OA, Sheluho DV, Kulakova LB, Dementieva LA, Egorov AM (1993) Catalytic properties and stability of a Pseudomonas sp. 101 formate dehydrogenase mutants containing Cys-255-Ser and Cys-255-Met replacements. Biochem Biophys Res Commun 192:976–981

    Article  CAS  Google Scholar 

  • van der Donk R, Zhao H (2003) Recent developments in pyridine nucleotide regeneration. Curr Opin Biotechnol 14:421–426

    Article  Google Scholar 

  • Weuster-Botz D (2007) Process intensification of whole-cell biocatalysis with ionic liquids. Chem Rec 7:334–340

    Article  CAS  Google Scholar 

  • Wichmann R, Vasic-Racki D (2005) Cofactor regeneration at the lab scale. Adv Biochem Engin/Biotechnol 92:225–260

    Article  CAS  Google Scholar 

  • Wierenga RK, de Maeyer MCH, Hol WGJ (1985) Interaction of pyrophosphate moieties with alpha-helixes in dinucleotide-binding proteins. Biochemistry 24:1346–1357

    Article  CAS  Google Scholar 

  • Wohlgemuth R (2010) Asymmetric biocatalysis with microbial enzymes and cells. Curr Opin Microbiol 13:283–292

    Article  CAS  Google Scholar 

  • Wu W, Zhu D, Hua L (2009) Site-saturation mutagenesis of formate dehydrogenase from Candida bodinii creating effective NADP+-dependent FDH enzymes. J Mol Catal B: Enzym 61:157–161

    Article  CAS  Google Scholar 

  • Yamamoto H, Matsuyama A, Kobayashi Y (2003) Synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate using fabG-homologues. Appl Microbiol Biotechnol 61:133–139

    CAS  Google Scholar 

  • Yamamoto H, Mitsuhashi K, Kimoto N, Kobayashi Y, Esaki N (2005) Robust NADH-regenerator: improved alpha-haloketone-resistant formate dehydrogenase. Appl Microbiol Biotechnol 67:33–39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Hoelsch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoelsch, K., Sührer, I., Heusel, M. et al. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability. Appl Microbiol Biotechnol 97, 2473–2481 (2013). https://doi.org/10.1007/s00253-012-4142-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4142-9

Keywords

Navigation