Skip to main content
Log in

Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-l-fucose production in recombinant Escherichia coli

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Guanosine 5′-triphosphate (GTP) is the key substrate for biosynthesis of guanosine 5′-diphosphate (GDP)-l-fucose. In this study, improvement of GDP-l-fucose production was attempted by manipulating the biosynthetic pathway for guanosine nucleotides in recombinant Escherichia coli-producing GDP-l-fucose. The effects of overexpression of inosine 5′-monophosphate (IMP) dehydrogenase, guanosine 5′-monophosphate (GMP) synthetase (GuaB and GuaA), GMP reductase (GuaC) and guanosine–inosine kinase (Gsk) on GDP-l-fucose production were investigated in a series of fed-batch fermentations. Among the enzymes tested, overexpression of Gsk led to a significant improvement of GDP-l-fucose production. Maximum GDP-l-fucose concentration of 305.5 ± 5.3 mg l−1 was obtained in the pH-stat fed-batch fermentation of recombinant E. coli-overexpressing Gsk, which corresponds to a 58% enhancement in the GDP-l-fucose production compared with the control strain overexpressing GDP-l-fucose biosynthetic enzymes. Such an enhancement of GDP-l-fucose production could be due to the increase in the intracellular level of GMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bode L (2006) Recent advances on structure, metabolism, and function of human milk oligosaccharides. J Nutr 136:2127–2130

    CAS  Google Scholar 

  • Byun SG, Kim MD, Lee WH, Lee KJ, Han NS, Seo JH (2007) Production of GDP-l-fucose, l-fucose donor for fucosyloligosaccharide synthesis, in recombinant Escherichia coli. Appl Microbiol Biotechnol 74:768–775

    Article  CAS  Google Scholar 

  • Escobar-Henriques M, Daignan-Fornier B (2001) Transcriptional regulation of the yeast GMP synthesis pathway by its end products. J Biol Chem 276:1523–1530

    Article  CAS  Google Scholar 

  • Furuya A, Okachi R, Takayama K, Abe S (1973) Accumulation of 5′-guanine nucleotides by mutants of Brevibacterium ammoniagenes. Biotechnol Bioeng 15:795–803

    Article  CAS  Google Scholar 

  • Jimenez A, Santos MA, Pompejus M, Revuelta JL (2005) Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii. Appl Environ Microbiol 71:5743–5751

    Article  CAS  Google Scholar 

  • Koizumi S, Endo T, Tabata K, Nagano H, Ohnishi J, Ozaki A (2000) Large-scale production of GDP-fucose and Lewis X by bacterial coupling. J Ind Microbiol Biotechnol 25:213–217

    Article  CAS  Google Scholar 

  • Lee WH, Han NS, Park YC, Seo JH (2009) Modulation of guanosine 5′-diphosphate-d-mannose metabolism in recombinant Escherichia coli for production of guanosine 5′-diphosphate-l-fucose. Bioresour technol 100:6143–6148

    Article  CAS  Google Scholar 

  • Lee WH, Chin YW, Han NS, Kim MD, Seo JH (2011) Enhanced production of GDP-l-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli. Appl Microbiol Biotechnol 91:967–976

    Article  CAS  Google Scholar 

  • Lim SH, Choi JS, Park EY (2001) Microbial production of riboflavin using riboflavin overproducers, Ashbya gossypii, Bacillus subtilis, and Candida famate: an overview. Biotechnol Bioprocess Eng 6:75–88

    Article  CAS  Google Scholar 

  • Mantsala P, Zalkin H (1992) Cloning and sequence of Bacillus subtilis purA and guaA, involved in the conversion of IMP to AMP and GMP. J Bacteriol 174:1883–1890

    CAS  Google Scholar 

  • Matsui H, Sato K, Enei H, Hirose Y (1977) Mutation of an inosine-producing strain of Bacillus subtilis to dl-methionine sulfoxide resistance for guanosine production. Appl Environ Microbiol 34:337–341

    CAS  Google Scholar 

  • Matsui H, Kawasaki H, Shimaoka M, Kurahashi O (2001a) Investigation of various genotype characteristics for inosine accumulation in Escherichia coli W3110. Biosci Biotechnol Biochem 65:570–578

    Article  CAS  Google Scholar 

  • Matsui H, Shimaoka M, Takenaka Y, Kawasaki H, Kurahashi O (2001b) gsk disruption leads to guanosine accumulation in Escherichia coli. Biosci Biotechnol Biochem 65:1230–1235

    Article  CAS  Google Scholar 

  • Nijkamp HJ, De Haan PG (1967) Genetic and biochemical studies of the guanosine 5′-monophosphate pathway in Escherichia coli. Biochim Biophys Acta 145:31–40

    CAS  Google Scholar 

  • Petersen C (1999) Inhibition of cellular growth by increased guanine nucleotide pools. Characterization of an Escherichia coli mutant with a guanosine kinase that is insensitive to feedback inhibition by GTP. J Biol Chem 274:5348–5356

    Article  CAS  Google Scholar 

  • Shimaoka M, Takenaka Y, Mihara Y, Kurahashi O, Kawasaki H, Matsui H (2006) Effects of xapA and guaA disruption on inosine accumulation in Escherichia coli. Biosci Biotechnol Biochem 70:3069–3072

    Article  CAS  Google Scholar 

  • Sigal N, Gorzalczany Y, Sarfstein R, Weinbaum C, Zheng Y, Pick E (2003) The guanine nucleotide exchange factor trio activates the phagocyte NADPH oxidase in the absence of GDP to GTP exchange on Rac. J Biol Chem 278:4854–4861

    Article  CAS  Google Scholar 

  • Stahmann KP, Revuelta J, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53:509–516

    Article  CAS  Google Scholar 

  • Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178:4885–4893

    CAS  Google Scholar 

  • Teshiba S, Furuya A (1989) Production of nucleotides and nucleosides by fermentation. Gordon and Breach Science Publisher, NY, USA

    Google Scholar 

  • Usuda Y, Kawasaki H, Shimaoka M, Utagawa T (1997) Molecular cloning and transcriptional analysis of a guanosine kinase gene of Brevibacterium acetylicum ATCC 953. J Bacteriol 179:6959–6964

    CAS  Google Scholar 

  • Yamamoto K, Kataoka E, Miyamoto N, Furukawa K, Ohsuye K, Yabuta M (2003) Genetic engineering of Escherichia coli for production of tetrahydrobiopterin. Metab Eng 5:246–254

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a Korea Research Council of Fundamental Science and Technology (KRCF) grant. This work was also supported by the Advenced Biomass R&D Center (ABC) of Korea Grant funded by the Ministry of Education, Science and Technology (2010–0029799). MD Kim was supported by the Regional Technology Innovation Program of the Ministry of Knowledge Economy (RTI05-01-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nam Soo Han or Jin-Ho Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WH., Shin, SY., Kim, MD. et al. Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-l-fucose production in recombinant Escherichia coli . Appl Microbiol Biotechnol 93, 2327–2334 (2012). https://doi.org/10.1007/s00253-011-3776-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3776-3

Keyword

Navigation