Skip to main content

Advertisement

Log in

Efficient use of shrimp waste: present and future trends

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The production of shrimp waste from shrimp processing industries has undergone a dramatic increase in recent years. Continued production of this biomaterial without corresponding development of utilizing technology has resulted in waste collection, disposal, and pollution problems. Currently used chemical process releases toxic chemicals such as HCl, acetic acid, and NaOH into aquatic ecosystem as byproducts which will spoil the aquatic flora and fauna. Environmental protection regulations have become stricter. Now, there is a need to treat and utilize the waste in most efficient manner. The shrimp waste contains several bioactive compounds such as chitin, pigments, amino acids, and fatty acids. These bioactive compounds have a wide range of applications including medical, therapies, cosmetics, paper, pulp and textile industries, biotechnology, and food applications. This current review article present the utilization of shrimp waste as well as an alternative technology to replace hazardous chemical method that address the future trends in total utilization of shrimp waste for recovery of bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aksu ZM (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    CAS  Google Scholar 

  • Al-Azab AA (2005) Effect of partial and complete replacement of fish meal with locally produced shrimp meal on growth performance of Nile tilapia (Oreochromis niloticus). Egypt Nutr Feeds 8:1145–1156

    Google Scholar 

  • Amar B, Philip R, Singh ISB (2000) Efficacy of fermented prawn shell waste as a feed ingredient for Indian prawn Fenneropenaeus indicus. Aquac Nutr 12:433–442

    Google Scholar 

  • Anderson LK (1975) Extraction of carotenoid pigment from shrimp processing waste. US patent 3906112

  • Anonymous (1997) SEMARNAP. Anuario Estadistico de Pesca. Government of Mexico

  • Arcidiacono S, Kaplan DL (1992) Molecular weight distribution of chitosan isolated from Mucor rouxii under different culture and processing conditions. Biotechnol Bioeng 39:281–286

    CAS  Google Scholar 

  • Armenta-López R, Guerrero I, Huerta S (2002) Astaxanthin extraction from shrimp waste by lactic fermentation and enzymatic hydrolysis of the carotenoprotein complex. J Food Sc 67:1002–1006

    Google Scholar 

  • Bautista J, Jover M, Gutierrez JF, Corpas R, Cremadas O, Fontiveros E (2001) Preparation of crawfish chitin by in situ lactic acid production. Process Biochem 37:229–234

    CAS  Google Scholar 

  • Bhaskar N, Suresh PV, Sakhare PZ, Sachindra NM (2007) Shrimp biowaste fermentation with Pediococcus acidolactici CFR2182: optimization of fermentation conditions by response surface methodology and effect of optimized conditions on deproteination/demineralization and carotenoids recovery. Enzym Microb Tech 40:1427–1434

    CAS  Google Scholar 

  • Bhaskar N, Suresh PV, Sakhare PZ, Sachindra NM, Lalitha RG (2010) Yield and chemical composition of fractions from fermented shrimp biowaste. Waste Manage Res 28:64–70

    Google Scholar 

  • Blanco M, Sotelo CG, Chapela MJ, Perez-Martin RI (2007) Towards sustainable and efficient use of fishery resources: present and future trends. Trends Food Sci Tech 18:29–36

    CAS  Google Scholar 

  • Bodmeier R, Chen H, Paeratakul O (1989) A novel approach to the oral delivery of micro- or nanoparticles. Pharm Res 6:413–417

    CAS  Google Scholar 

  • Bragagnolo L, Rodriguez-Amaya DB (2001) Total lipid cholesterol and fatty acids of farmed fresh water prawn (Macrobrachium rosenbergii) and wild marine shrimp (Penaeus brasiliensis, Penaeus schimitti, Xiphopenaeus kroyeri). J Food Compos Anal 14:359–369

    CAS  Google Scholar 

  • Brandl F, Sommer F, Goepferich A (2007) Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28:134–146

    CAS  Google Scholar 

  • Britton G (1997) Proceedings of the 11th international symposium on carotenoids, Leiden, The Netherlands 1996. Pure Appl Chem 69:2027–2173

    Google Scholar 

  • Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132

    CAS  Google Scholar 

  • Cano-Lopez A, Simpson BK, Haard NF (1987) Extraction of carotenoprotein from shrimp process wastes with the aid of trypsin from Atlantic cod. J Food Sci 52:503–504

    CAS  Google Scholar 

  • Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28:281–370

    CAS  Google Scholar 

  • Castillo R, Negre-sadargues G, Lenel R (1982) General survey of the carotenoids in crustacean. In: Britton G, Goodwin TW (eds) Carotenoid chemistry and biochemistry. Pergamon, Oxford, pp 211–224

    Google Scholar 

  • Chen HM, Meyers SP (1982) Extraction of astaxanthin pigment from crawfish waste using a soy oil process. J Food Sci 47:892–896

    CAS  Google Scholar 

  • Cheng JC, Pisano AP (2008) Photolithographic process for integration of the biopolymer chitosan into micro/nanostructures. J Microelectromech Syst 17:402–409

    CAS  Google Scholar 

  • Cira LA, Huerta S, Hall GM, Shirai K (2002) Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem 37:1359–1366

    CAS  Google Scholar 

  • Dai T, Tegos GP, Burkatovskaya M, Castano AP, Hamblin MR (2009) Chitosan acetate bandage as a topical antimicrobial dressing for infected burns. Antimicrob Agents Chemother 53:393–400

    CAS  Google Scholar 

  • Dapkevicius MDLE, Batista I, Nout MJR, Rambouts FM, Houben JH (1998) Lipid and protein changes during ensilage of blue whiting (Micromesistius pooutassou risso) by acid and biological methods. Food Chem 63:147–152

    Google Scholar 

  • Davies BH (1985) Carotenoid metabolism in animals: a biochemist's view. Pure Appl Chem 57:679–684

    CAS  Google Scholar 

  • De Holanda HD, Netto FM (2006) Recovery of components from shrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis. J Food Sci 71:298–303

    Google Scholar 

  • De Jong AJ, Heidstra R, Spaink HP, Hartog MV, Meijer EA, Hendriks T, Schiavo FL, Terzi M, Bisseling T, Van Kammen A, De Vries SC (1993) Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell 5:615–620

    Google Scholar 

  • El Ghaouth A, Arul J, Asselin A, Benhamou N (1992) Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycol Res 96:769–777

    CAS  Google Scholar 

  • Erbacher P, Zou S, Bettinger T, Steffan AM, Remy JS (1998) Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res 15:1332–1339

    CAS  Google Scholar 

  • Evvyernie D, Yamazaki S, Morimoto K, Karita S, Kimura T, Sakka K, Ohmiya K (2000) Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium. J Biosci Bioeng 89:596–601

    CAS  Google Scholar 

  • Fagberno OA (1996) Preparation properties and preservation of lactic acid fermented shrimp heads. Food Res Int 29:595–599

    Google Scholar 

  • FAO/WHO (1985) Energy and protein requirements. Report of joint FAO/WHO/UNU expert Consultation Technical Report, vol 724. FAO/WHO and United Nations University, Geneva, pp 116–129

    Google Scholar 

  • Feisal K, Montarop Y (2010) Chitin research revisited. Mar Drugs 8:1988–2012

    Google Scholar 

  • Felix G, Baureithel K, Boller T (1998) Desensitization of the perception system for chitin fragments in tomato cells. Plant Physiol 117:643–650

    CAS  Google Scholar 

  • Freier T, Montenegro R, Shan Koh H, Shoichet MS (2005) Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 26:4624–4632

    CAS  Google Scholar 

  • Fuchs J, Martin JLM, An NT (1999) Impact of tropical shrimp aquaculture on the environment in Asia and the Pacific. Eur Comm Fish Bull 12:9–13

    Google Scholar 

  • Gildberg A (2002) Enhancing returns from greater utilization. In: Bremner HA (ed) Safety and quality issues in fish processing. Woodhead publishing Ltd, Cambridge, pp 425–449

    Google Scholar 

  • Gildberg A, Stenberg E (2001) A new process for advanced utilization of shrimp waste. Process Biochem 36:809–812

    CAS  Google Scholar 

  • Gimeno M, Ramirez-Hernandez JY, Martinez-Ibarra C, Pacheco N, Garcia-Arrazola R, Barzana E, Shirai K (2007) One solvent extraction of astaxanthin from lactic acid fermented shrimp wastes. J Agric Food Chem 55:10345–10350

    CAS  Google Scholar 

  • Gong Y, Gong L, Gu X, Ding F (2009) Chitooligosaccharides promote peripheral nerve regeneration in a rabbit common peronneal nerve crush injury model. Microsurgery 29:650–656

    Google Scholar 

  • Gopalan NK, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites, processing and swelling behavior. Biomacromolecules 4:657–665

    Google Scholar 

  • Guerard F, Sumaya-Martinez MT, Laroque D, Chabeaud A, Dufosse L (2007) Optimization of free radical scavenging activity by response surface methodology in the hydrolysis of shrimp processing discards. Process Biochem 42:1486–1491

    CAS  Google Scholar 

  • Guerin M, Huntley Mark E, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends in Biochem 21:210–216

    CAS  Google Scholar 

  • Guillou A, Khalila M, Adambounou I (1995) Effects of silage preservation on astaxanthin forms and fatty acid profiles of processed shrimp (Pandalus borealis) waste. Aquaculture 130:351–360

    Google Scholar 

  • Haidar ZS, Hamdy RC, Tabrizian M (2008) Protein release kinetics for core-shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials 29:1207–1215

    CAS  Google Scholar 

  • Hakim L, Sabarudin A, Oshita K, Oshima M, Motomizu S (2008a) Synthesis of cross-linked chitosan functionalized with threonine moiety and its application to on-line collection/concentration and determination of Mo, V and Cu. Talanta 74:977–985

    CAS  Google Scholar 

  • Hakim L, Sabarudin A, Oshita K, Oshima M, Motomizu S (2008b) Synthesis of chitosan-based resins modified with tris (2-aminoethyl) amine moiety and its application to collection/concentration and determination of trace mercury by inductively coupled plasma atomic emission spectrometry. Talanta 76:1256–1260

    CAS  Google Scholar 

  • Hall GM, DA Silva S (1992) Lactic acid fermentation of shrimp (Penaeus monodon) waste for chitin recovery. In: Brine CJ, Sandford PA, Zikakis JP (eds) Advances in chitin and chitosan. Elsevier Applied Sciences, London, pp 633–638

    Google Scholar 

  • He H, Chen X, Sun C, Zhang Y, Gao P (2006) Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM98011. Biores Technol 97:85–90

    Google Scholar 

  • Healy MG, Romo CR, Bustos R (1994) Bioconversion of marine crustacean shell waste. Res Conserv Recycl 11:139–147

    Google Scholar 

  • Healy M, Green M, Healy A (2003) Bioprocessing of marine crustacean shell waste. Acta Biotechnol 23:151–160

    CAS  Google Scholar 

  • Holland CR (1986) Recovery of single cell protein by chitosan in a batch dissolved air flocculation system. Dissertation, Department of mechanical and manufacturing, Aeronautical and chemical Engineering. The Queen's University of Belgast, Northern Ireland

    Google Scholar 

  • Ito Y, Kaku H, Shibuya N (1997) Identification of a high-affinity binding protein for N-acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling. Plant J 12:347–356

    CAS  Google Scholar 

  • Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47:83–97

    CAS  Google Scholar 

  • Je JY, Kim SK (2006) Antioxidant activity of novel chitin derivative. Bioorg Med Chem Lett 16:1884–1887

    CAS  Google Scholar 

  • Jeuniaux C (1996) A brief survey of the early contribution of European scientists to chitin knowledge. In: Domard A, Jeuniaux C, Muzzarelli RAA, Roberts G (eds) Advances in chitin sciences. Jacques André Publication, Lyon, pp 1–9

    Google Scholar 

  • Jollès P, Muzzarelli RAA (1999) Chitin and Chitinases, In: Birkhäuser Verlag (ed), Basel, Switzerland

  • Katayama T, Hirata K, Chichester CO (1971) The biosynthesis of astaxanthin IV. The carotenoids in the prawn Penaeus japonicas. Bull Jpn Soc Fish 37:614–620

    CAS  Google Scholar 

  • Kelleher K (2005) Discards in the world's marine fisheries. An update FAO Fisheries Technical Paper N 470, Rome, pp131

  • Klokkevold PR, Fukayama H, Sung EC, Bertolami CN (1999) The effect of chitosan (poly-N-acetyl glucosamine) on lingual hemostasis in heparinized rabbits. J Oral Maxillofac Surg 57:49–52

    CAS  Google Scholar 

  • Knapczyk J, Brzozowski T (1982) Some biomedical properties of chitosan. Dissertation, Nicholas Copernicus Medical Academy, Krakow, Poland

  • Knorr D (1991) Recovery and utilization of chitin and chitosan in food processing waste management. Food Technol 26:114–122

    Google Scholar 

  • Kyung-Taek OH, Young-Ju Kim, Van Nam N, Woo-Jin Jung, Ro-Dong Park (2007) Demineralization of crab shell waste by Pseudomonas aeruginosa F722. Process Biochem 42:1069–1074

    Google Scholar 

  • Lang G, Clausen T (1985) The use of chitosan in cosmetics. Wella AG, Berlines allec 65, 6100, Darmstadt, West Germany

  • Latscha T (1990) Carotenoids—their nature and significance in animal feeds. In: F Hoffmann-La Roche Ltd, Animal Nutrition and Health, Basel, Switzerland. ISBN 3-906507-03-3. pp 110

  • Laura RC, Maria Del Carmen MC, Huerta S, Revah S, Shirai K (2006) Enzymatic hydrolysis of chitin in the production of oligosaccharide using Lecanicillium fungicola chitinases. Process Biochem 41:1106–1110

    Google Scholar 

  • Legarrenta GI, Zakaria Z, Hall GM (1996) Lactic fermentation of prawn waste: comparison of commercial and isolated starter culture. In: Domard A, Jeuniaux C, Muzzarelli RAA, Roberts GAF (eds) Advances in chitin science, vol 1. Jacques Andre, Lyon, pp 399–406

    Google Scholar 

  • Li H, Tyndale SJ, Heath DD, Letcher RJ (2005) Determination of carotenoids and all-trans-retinol on fish eggs by liquid chromatography-electrospray ionization-tandem mass spectrometry. J Chromatogr 816:49–56

    CAS  Google Scholar 

  • Liang TW, Chen YJ, Yen YH, Wang SL (2007) The antitumor activity of the hydrolysates of chitinous materials hydrolysed by crude enzyme from Bacillus amyloliquefaciens V656. Process Biochem 2:527–534

    Google Scholar 

  • Luis SJT, Moldes AB, Alonso JL, Vazquez M (2003) Optimization of lactic acid production by Lactobacillus delbruckii through response surface methodology. J Food Sci 68:1454–1458

    Google Scholar 

  • Maezaki Y, Tsuji K, Nakagawa Y, Kawai Y, Akimoto M, Tsugita T, Takekawa W, Terada A, Hara H, Mitsuoka T (1993) Hypocholesterolemic effect of chitosan in adult males. Biosci Biotech Biochem 57:1439–1444

    CAS  Google Scholar 

  • Mahmoud NS, Ghaly AE, Arab F (2007) Unconventional approach for demineralization of deproteinized crustacean shells for chitin production. Am J Biochem Biotechnol 3:1–9

    CAS  Google Scholar 

  • Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030

    CAS  Google Scholar 

  • Maryam Mizani A, Mahmood Aminlari B (2007) A new process for deproteinization of chitin from shrimp head waste. Proceedings of European Congress of Chemical Engineering (ECCE-6) 16–20

  • Mathew P, Nair KGR (2006) Ensilation of shrimp waste by Lactobacillus fermentum. Fish Technol 43:59–64

    Google Scholar 

  • Mathur NK, Narang CK (1990) Chitin and chitosan versatile polysaccharides from marine animals. J Chem Educ 67:938

    CAS  Google Scholar 

  • Meraz M, Shirai K, Larralde P, Revah S (1992) Studies on the bacterial acidification process of Cassava (Manihot esculenta). J Sci Food Agric 60:457–463

    CAS  Google Scholar 

  • Mi FL, Shyu SS, Wu YB, Lee ST, Shyong JY, Huang RN (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22:165–173

    CAS  Google Scholar 

  • Millamena OM, Bautista MN, Kanazawa A (1996a) Methionine requirement of juvenile tiger shrimp Penaeus monodon Fabricius. Aquaculture 143:403–410

    CAS  Google Scholar 

  • Millamena OM, Bautista MN, Kanazawa A (1996b) Valine requirement of post larval tiger shrimp Penaeus monodon Fabricius. Aquac Nutr 2:129–132

    CAS  Google Scholar 

  • Millamena OM, Bautista MN, Kanazawa A (1997) Threonine requirement of juvenile tiger shrimp Penaeus monodon Fabricius. Aquaculture 151:9–14

    CAS  Google Scholar 

  • Millamena OM, Bautista MN, Kanazawa A (1998) Requirement of juvenile tiger shrimp Penaeus monodon Fabricius for lysine and arginine. Aquaculture 164:95–104

    CAS  Google Scholar 

  • Millamena OM, Bautista MN, Kanazawa A (1999) Quantitative dietary requirements of post larval tiger shrimp Penaeus monodon for histidine, isoleucine, leucine, phenylalanine and tryptophan. Aquaculture 179:169–179

    CAS  Google Scholar 

  • Minami E, Kouchi H, Carlson RW, Cohn JR, Kolli VK, Day RB, Ogawa T, Stacey G (1996) Cooperative action of lipo-chitin nodulation signals on the induction of the early nodulin ENOD2 in soybean roots. Mol Plant Microbe Interact 9:574–583

    CAS  Google Scholar 

  • Minami S, Suzuki H, Okamoto Y, Fujinaga T, Shigemasa Y (1998) Chitin and chitosan activate complement via the alternative pathway. Carbohyd Polym 36:151–155

    CAS  Google Scholar 

  • Minke R, Blackwell J (1978) The structure of alpha-chitin. J Mol Biol 120:167–181

    CAS  Google Scholar 

  • Maryam M, Aminlari M, Khodabandeh M (2005) An effective method for producing a nutritive protein extract powder from shrimp-head waste. Food Sci Technol Int 11:49–54

    Google Scholar 

  • Morgan L, Chuenpagdue R (2003) Shifting gears addressing the collateral impacts of fishing methods in U.S. waters. Island Press, Washington

    Google Scholar 

  • Morimoto K, Kimura T, Sakka K, Ohmiya K (2005) Over expression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol Lett 246:229–234

    CAS  Google Scholar 

  • Mukundan MK, Antony PD, Nair MR (1986) A review on autolysis in fish. Fish Res 4:259–269

    Google Scholar 

  • Muzzarelli RAA (1997) Chitin. Pergamon Press, New York, p 97

    Google Scholar 

  • Muzzarelli RAA, Mozzarelli C (2009) Chitin and chitosan hydrogels. In: Phillips GO, Williams PA (eds) Handbook of Hydrocolloids. Wood head Publishing Ltd, Cambridge, pp 849–888

    Google Scholar 

  • Naguib Yousry MA (2000) Antioxidant activities of astaxanthin and related carotenoids. J Agri Food Chem 48:1150–1154

    Google Scholar 

  • Negre-Sadargues G, Castillo R, Petit H, Sance S, Martinez RG, Milicus JCG, Choubert G, Trilles JP (1993) Utilization of synthetic carotenoids by the prawn Penaeus japonicas reared under laboratory conditions. Aquaculture 110:151–159

    CAS  Google Scholar 

  • Neith P, Garnica-Gonzalez M, Ramirez-Hernandez JY, Flores-Albino B, Gimeno M, Barzana E, Shirai K (2009) Effect of temperature on chitin and astaxanthin recoveries from shrimp waste using lactic acid bacteria. Biores Technol 100:2849–2854

    Google Scholar 

  • NRC (1993) National Research Councilnutrient requirement of fish. National Academy of Science, Washington, p p124

    Google Scholar 

  • Nwanna LC, Daramola (2001) Harnessing of shrimp head waste in Nigeria for low cost production of tilapia. Pak J Nutr 2:339–345

    Google Scholar 

  • Okada M, Matsumura M, Shibuya N (2001) Identification of a high-affinity binding protein for N-acetylchitooligosaccharide elicitor in the plasma membrane from rice leaf and root cells. J Plant Physiol 158:121–124

    CAS  Google Scholar 

  • Omum JV (1992) Shrimp waste—must it be wasted? Info fish Int 6:48

    Google Scholar 

  • Ong SY, Wu J, Moochhala SM, Tan MH, Lu J (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29:4323–4332

    CAS  Google Scholar 

  • Oshita K, Seo K, Sabarudin A, Oshima M, Takayanagi T, Motomizu S (2008) Synthesis of chitosan resin possessing a phenylarsonic acid moiety for collection/concentration of uranium and its determination by ICP-AES. Anal Bioanal Chem 390:1927–1932

    CAS  Google Scholar 

  • Ouattara B, Simard RE, Piette G, Begin A, Holley RA (2000) Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int J Food Microbiol 62:139–148

    CAS  Google Scholar 

  • Park SH, KO YJ, Kim KS (2005) Physiological functions of chitosans as functional food ingredients. Korean J Chitin chitosan 10:55–60

    Google Scholar 

  • Patat SA, Carnegie RB, Kingsbury C, Gross PS, Chapman R, Schey KL (2004) Antimicrobial activity of histones from hemocytes of the Pacific white shrimp. Eur J Biochem 271:4825–4833

    CAS  Google Scholar 

  • Patidar P, Agarwal D, Banerjee T, Patil S (2005) Optimization of process parameters for chitinase production by soil isolates of Pencillium chrysogenum under solid substrate fermentation. Process Biochem 40:2962–2967

    CAS  Google Scholar 

  • Peiselt da Silva KM, Pais da silva MI (2004) Copper sorption from diesel oil on chitin and chitosan polymers. Colloids Surf A 237:15–21

    CAS  Google Scholar 

  • Percot AC, Viton Domard A (2003) Optimization of chitin extraction from shrimp shells. Biomacromolecules 4:12–18

    CAS  Google Scholar 

  • Prameela K, Murali Mohan Ch, Hemalatha KPJ (2010a) Extraction of pharmaceutically important chitin and carotenoids from shrimp biowaste by microbial fermentation method. J Pharm Res 3:2393–2395

    CAS  Google Scholar 

  • Prameela K, Murali Mohan Ch, Hemalatha KPJ (2010b) Optimization of fermentation of shrimp biowaste under different sources for recovery of chitin and carotenoids by using lactic acid bacteria. J Pharm Res 3:2888–2889

    CAS  Google Scholar 

  • Prameela K, Murali Mohan CH, Smitha PV, Hemalatha KPJ (2010c) Bioremediation of shrimp biowaste by using natural probiotic for chitin and carotenoid production an alternative method to hazardous chemical method. Int J Appl Biol Pharm Technol 1:903–910

    Google Scholar 

  • Prameela K, Murali Mohan CH, Hemalatha KPJ (2010d) Bio-efficiency of Pediococcus acidilactici (ATCC 8042) for recovery of chitin and carotenoids in the fermentation of shrimp biowaste. Int J ChemTech Res 2:1924–1928

    CAS  Google Scholar 

  • Rao MS, Stevens WF (2005) Quality parameters of chitosan derived from fermentation of shrimp biomaterial using a drum reaction. J Chem Technol Biotechnol 80:1080–1087

    CAS  Google Scholar 

  • Rao MS, Munoz J, Stevens WF (2000) Critical factors in chitin production by fermentation of shrimp biowastes. Appl Microbiol Biotechnol 54:808–813

    CAS  Google Scholar 

  • Rao MS, Guyot JP, Pintado J, Stevens WF (2002) Advance in chitin Science. Vol. V, Bangkok, Thailand, 40–44

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    CAS  Google Scholar 

  • Roberts GAF (1992) Chitin chemistry, Roberts, G.A; Macmillan press, Ltd, pp. 85–91

  • Rockway SW (2000) Absorbitol fat binding report. An in vitro binding study. Pharmanutrients, Scientific affairs pp. 1–8

  • Rosenberry B (1998) World shrimp farming no 11. Shrimp News International, SanDiego, p 328

    Google Scholar 

  • Sachindra NM, Bhaskar N (2008) In vitro antioxidant activity of liquor from fermented shrimp biowaste. Biores Technol 99:9013–9016

    CAS  Google Scholar 

  • Sachindra NM, Mahendrakar NS (2005) Process optimization for extraction of carotenoids from shrimp waste with vegetable oil. Biores Technol 96:1195–1200

    CAS  Google Scholar 

  • Sachindra NM, Bhaskar N, Mahendrakar NS (2005) Carotenoids in different body components of Indian shrimps. J Sci Food Agric 85:167–172

    CAS  Google Scholar 

  • Sachindra NM, Bhaskar N, Mahendrakar NS (2006) Recovery of carotenoids from shrimp waste in organic solvents. Waste Manag 26:1092–1098

    CAS  Google Scholar 

  • Sachindra NM, Bhaskar N, Siddegoeda GS, Sathisha AD, Suresh PV (2007) Recovery of carotenoids from ensilaged shrimp waste. Biores Technol 98:1642–1646

    CAS  Google Scholar 

  • Sakaguchi T, Horikoshi T, Nakajima A (1981) Adsorption of uranium by chitin phosphate and chitosan phosphate. Agric Biol Chem 45:2191–2195

    CAS  Google Scholar 

  • Shahidi F, Synowiecki J (1991) Isolation and characterization of nutrients and value added products from snow crab (Chinoecetesopilio) and shrimp (Pandualus borealis) processing discards. J Agric Food Chem 39:1527–1532

    CAS  Google Scholar 

  • Shahidi F, Metusalach, Brown JA (1998) Carotenoid pigments in seafood and aquaculture. CRC Cri Rev Food sci 38:1–67

    CAS  Google Scholar 

  • Shirai K, Legarreta GI, Rodrigues-Serrano S, Huerta-Ochoa S, Saucedo Castaneda G, Hall GM (1997) Aspects of protein breakdown during the lactic acid fermentation of prawn waste. In: Domard A, Roberts GAF, Varum K (eds) Advances in chitin sciences, vol 2. Jacques Andre, lyon, pp 56–63

    Google Scholar 

  • Shirai K, Guerrero I, Huerta S, Saucedo G, Castillo A, Gonzalez R (2001) Effect of initial glucose concentration and inoculation level of lactic acid bacteria in shrimp waste ensilation. Enz Microbiol Biotechnol 28:446–452

    CAS  Google Scholar 

  • Sikorski P, Hori R, Wada M (2009) Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data. Biomacromolecules 10:1100–1105

    CAS  Google Scholar 

  • Simpson BK, Haard NF (1985) The use of enzymes to extract carotenoprotein from shrimp waste. J Appl Biochem 7:212–222

    CAS  Google Scholar 

  • Soltan MA, Hanafy MA, Wafa MIA (2008) An evaluation of fermented silage from fish by-products as a feed ingredient for African catfish (Claris gariepinus). Glob Vet 2:80–86

    Google Scholar 

  • Srinivas Rao M, Willlem F, Stevens (2006) Fermentation of shrimp biowaste under different salt concentrations with amylolytic and non- amylolytic Lactobacillus strains for chitin production. Food Techno Biotechnol 44:83–87

    Google Scholar 

  • Stanford PA (1987) Chitosan commercial uses and potential applications. Director Product Development Bio Applications Group, Protan, Inc, Woodinville

    Google Scholar 

  • Stepnowski P, Olafsson G, Helgason H, Jasturff B (2004) Recovery of astaxanthin from seafood wastewater utilizing fish scales waste. Chemosphere 54:413–417

    CAS  Google Scholar 

  • Struszczyk MH (2006) In: Monograph XI (ed) Global requirements for medical applications of chitin and its derivatives. Polish Chitin Society, Łódź, pp 95–102

    Google Scholar 

  • Subasinghe S (1999) Chitin from shellfish waste-health benefits over-shadowing industrial uses. Info fish Int 3:58–65

    Google Scholar 

  • Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M (1986) Antitumor effects of hexa-N- acetylchitohexose and chitohexose. Carbohyd Res 151:403–408

    CAS  Google Scholar 

  • Synowiecki J, Al-Khateeb NAAQ (2000) The recovery of protein hydrosylate during enzymatic isolation of chitin from shrimp Cragon cragon processing discards. J Food Chem 68:147–152

    CAS  Google Scholar 

  • Synowiecki J, Al-Khateeb NA (2003) Production, properties and some new applications of chitin and its derivatives. Crit Rev Food Sci Nutr 43:145–171

    CAS  Google Scholar 

  • Tacon AGJ, Akiyama DM (1997) Feed ingredients. In: D'Abramo JD, Conklin DE, Akiyama DM (eds) Crustacean Nutrition. Advances in World Aquaculture, vol 6. World Aquaculture Society, Baton Rouge, pp 411–472

    Google Scholar 

  • Taha SMA, Swailam HMH (2002) Antibacterial activity of chitosan against Aeromonas hydrophila. Food/Nahrung 46:337–340

    CAS  Google Scholar 

  • Tanaka T, Morishita Y, Suzui M, Kojima T, Okumura A, Mori H (1994) Chemopreservation of mouse urinary bladder carcinogenesis by naturally occurring carotenoid astaxanthin. Carcinogenesis 15:15–19

    CAS  Google Scholar 

  • Vannuccini S (2004) Overview of fish production utilization consumption and trade: based on 2002 data. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Wang SL, Chio SH (1998) Deproteinization of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-187. Enzyme Microbiol Technol 22:629–633

    CAS  Google Scholar 

  • Wang SL, Lin TY, Yen YH, Liao HF, Chen Y (2006) Bioconversion of shell fish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydrate Res 341:2507–2515

    CAS  Google Scholar 

  • Wang SL, Lin HT, Liang TW, Chen YJ, Yen YH, Guo SP (2008) Reclamation of chitinous materials by bromelain for preparation of anti tumor and antifungal materials. Biores Technol 99:4386–4393

    CAS  Google Scholar 

  • Wang B, Tian C, Wang L, Wang R, Fu H (2010) Chitosan: a green carbon source for the synthesis of graphitic nanocarbon, tungsten carbide and graphitic nanocarbon/tungsten carbide composites. Nanotechnology 21:025606

    Google Scholar 

  • Wenhong C, Chaohua Z, Pengzhi H, Hongwu J, Jiming H, Jing Z (2009) Autolysis of shrimp head by gradual temperature and nutritional quality of the resulting hydrolysate. Food Sci Technol Leb 42:244–249

    Google Scholar 

  • Woods B (1998) Microbiology of fermented foods, vol 1. Blackie, NY

    Google Scholar 

  • Yamazaki S, Takegawa A, Kaneko Y, Kadokawa J, Yamagata M, Ishikawa M (2009) An acidic cellulose-chitin hybrid gel as novel electrolyte for an electric double layer capacitor. Electrochem Commun 11:68–70

    CAS  Google Scholar 

  • Yang JK, Shih IL, Tzeng YM, Wang SL (2000) Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microbiol Technol 26:406–413

    CAS  Google Scholar 

  • Zakaria Z, Hall GH, Shama G (1998) Lactic acid fermentation of scampi waste in a rotating horizontal bioreactor for chitin recovery. Process Biochem 33:1–6

    CAS  Google Scholar 

  • Zia KM, Zuber M, Barikani M, Bhatti IA, Khan MB (2009) Surface characteristics of chitin-based shape memory polyurethane elastomers. Colloids Surf B Biointerfaces 72:248–252

    CAS  Google Scholar 

Download references

Acknowledgements

KP is grateful to Prof. K. Aruna Lakshmi and Prof. R. Sinha for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prameela Kandra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandra, P., Challa, M.M. & Kalangi Padma Jyothi, H. Efficient use of shrimp waste: present and future trends. Appl Microbiol Biotechnol 93, 17–29 (2012). https://doi.org/10.1007/s00253-011-3651-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3651-2

Keywords

Navigation