Skip to main content
Log in

Biological activity and mechanical stability of sol–gel-based biofilters using the freeze-gelation technique for immobilization of Rhodococcus ruber

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilters with long lifetime and high storage stability are very important for bioremediation processes to ensure the readiness at the occurrence of sudden contaminations. By using the freeze-gelation technique, living cells can be immobilized within a mechanically and chemically stable ceramic-like matrix. Due to a freeze-drying step, the embedded microorganisms are converted into a preserved form. In that way, they can be stored under dry conditions, which comply better with storage, transport, and handling requirements. Thus, in contrast to other immobilization techniques, there is no need for storage in liquid or under humid atmosphere. The biological activity, mechanical strength, and the structure of the biologically active ceramic-like composites (biocers) produced by freeze gelation have been investigated by using the phenol-degrading bacteria Rhodococcus ruber as model organism. Samples of freeze-gelation biocers have been investigated after defined storage periods, demonstrating nearly unchanged mechanical strength of the immobilization matrix as well as good storage stability of the activity of the immobilized cells over several months of storage at 4 °C. Repeated-batch tests demonstrated further that the freeze-gelation biocers can be repeatedly used over a period of more than 12 months without losing its bioactivity. Thus, these results show that freeze-gelation biocers have high potential of being scaled up from laboratory test systems to applications in real environment because of their long bioactivity as well as mechanical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahamad AP, Kunhi MA (2011) Enhanced degradation of phenol Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes. Biodegradation 22:253–265

    Article  Google Scholar 

  • Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16:1013–1030

    Article  CAS  Google Scholar 

  • Bell KS, Philp JC, Aw DWJ, Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85:195–210

    Article  CAS  Google Scholar 

  • Bettmann H, Rehm HJ (1984) Degradation of phenol by polymer entrapped microorganisms. Appl Microbiol Biotechnol 20:285–290

    Article  CAS  Google Scholar 

  • Böttcher H, Soltmann U, Mertig M, Pompe W (2004) Biocers: ceramics with incorporated microorganisms for biocatalytic, biosorptive and functional materials development. J Mater Chem 14:2176–2188

    Article  Google Scholar 

  • Brányik T, Kuncová G, Páca J (2000) The use of silica gel prepared by sol–gel method and polyurethane foam as microbial carriers in the continuous degradation of phenol. Appl Microbiol Biotechnol 54(2):168–172

    Article  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol Biotechnol 16:79–101

    Google Scholar 

  • Chernev G, Rangelova N, Djambazki P, Nenkova S, Salvado I, Fernandes M, Wu A, Kabaivanova L (2011) Sol–gel silica hybrid biomaterials for application in biodegradation of toxic compounds. J Sol-Gel Sci Technol 58(3):619–624

    Article  CAS  Google Scholar 

  • Coiffier A, Coradin T, Roux C, Bouvet OMM, Livage J (2001) Sol–gel encapsulation of bacteria: a comparison between alkoxide and aqueous routes. J Mater Chemoistry 11:2039–2044

    Article  CAS  Google Scholar 

  • Coradin T, Boissiere M, Livage J (2006) Sol–gel chemistry in medicinal science. Curr Med Chem 13(1):99–108

    Article  CAS  Google Scholar 

  • Coradin T, Amoura M, Roux C, Livage J, Flickinger MC (2009) Biocers, industrial applications. In: Encyclopedia of industrial biotechnology. Wiley, New York

    Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2005) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67:715–726

    Article  Google Scholar 

  • Depagne C, Roux C, Coradin T (2010) How to design cell-based biosensors using the sol–gel process. Anal Bioanal Chem 400(4):965–976

    Article  Google Scholar 

  • Deville S (2010) Freeze-casting of porous biomaterials: structure, properties and opportunities. Materials 3(3):1913–1927

    Article  CAS  Google Scholar 

  • Fiedler D, Thron A, Soltmann U, Böttcher H (2004) New packing materials for bioreactors based on coated and fiber-reinforced biocers. Chem Mater 16:3040–3044

    Article  CAS  Google Scholar 

  • Gadre SY, Gouma PI (2006) Biodoped ceramics: synthesis, properties, and applications. J Am Ceram Soc 89(10):2987–3002

    Article  CAS  Google Scholar 

  • Kabaivanova LV, Chernev GE, Salvado IMM, Fernandes MHV (2011) Silica-carrageenan hybrids used for cell immobilization realizing high-temperature degradation of nitrile substrates. Cent Eur J Chem 9(2):232–239

    Article  CAS  Google Scholar 

  • Keweloh H, Heipieper H, Rehm H (1989) Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Appl Microbiol Biotechnol 31:383–389

    Article  CAS  Google Scholar 

  • Koch D, Andresen L, Schmedders T, Grathwohl G (2003) Evolution of porosity by freeze casting and sintering of sol–gel derived ceramics. J Sol-Gel Sci Technol 26(1):149–152

    Article  CAS  Google Scholar 

  • Koch D, Soltmann C, Grathwohl G (2007) Bioactive ceramics—new processing technologies for immobilization of microorganisms for filtration and bioreactor applications. Key Eng Mater 336–338:1683–1687

    Article  Google Scholar 

  • Kuncova G, Podrazky O, Ripp S, Trögl J, Sayler GS, Demnerova K, Vankova R (2004) Monitoring of the viability of cells immobilized by sol–gel process. J Sol-Gel Sci Technol 31:335–342

    Article  CAS  Google Scholar 

  • Lacoste RJ, Venable SH, Stone JC (1959) Modified 4-aminoantipyrine colorimetric method for phenols. Application to acrylic monomer. Anal Chem 31(7):1246–1249

    Article  CAS  Google Scholar 

  • Liu YJ, Zhang AN, Wang XC (2009) Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03. Biochem Eng J 44:187–192

    Article  CAS  Google Scholar 

  • Marrot B, Barrios-Martinez A, Moulin P, Roche N (2006) Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor. Biochem Eng J 30:174–183

    Article  CAS  Google Scholar 

  • Maxwell WA, Gurnick RS, Francisco AC (1954) Preliminary investigation of the freeze-casting method for forming refractory powders. NACA Res Memo E53L21:1–19

    Google Scholar 

  • Meunier CF, Dandoy P, Su B-L (2010) Encapsulation of cells within silica matrixes: towards a new advance in the conception of living hybrid materials. J Colloid Interface Sci 342(2):211–224

    Article  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Miyamoto-Shinohara Y, Sukenobe J, Imaizumi T, Nakahara T (2006) Survival curves for microbial species stored by freeze-drying. Cryobiology 52:27–32

    Article  Google Scholar 

  • Mkandawire M, Förster J, Fiedler D, Böttcher H, Pompe W (2009) Spectrophotometric verification of biodegradation of phenol in a flow dynamic biocers-based bioreactor system. Int J Environ Anal Chem 89(7):529–541

    Article  CAS  Google Scholar 

  • Moritz T, Richter H-J (2006) Ceramic bodies with complex geometries and ceramic shells by freeze casting using ice as mold material. J Am Ceram Soc 89(8):2394–2398

    Article  CAS  Google Scholar 

  • Munch E, Saiz E, Tomsia AP, Deville S (2009) Architectural control of freeze-cast ceramics through additives and templating. J Am Ceram Soc 92(7):1534–1539

    Article  CAS  Google Scholar 

  • Nassif N, Bouvet O, Noelle Rager M, Roux C, Coradin T, Livage J (2002) Living bacteria in silica gels. Nat Mater 1:42–44

    Article  CAS  Google Scholar 

  • Pannier A, Oehm C, Fischer AR, Werner P, Soltmann U, Böttcher H (2010) Biodegradation of fuel oxygenates by sol–gel immobilized bacteria Aquincola tertiaricarbonis L108. Enzym Microb Technol 47(6):291–296

    Article  CAS  Google Scholar 

  • Perullini M, Jobbagy M, Mouso N, Forchiassin F, Bilmes SA (2010) Silica-alginate-fungi biocomposites for remediation of polluted water. J Mater Chem 20(31):6479–6483

    Article  CAS  Google Scholar 

  • Perullini M, Amoura M, Roux C, Coradin T, Livage J, Japas ML, Jobbagy M, Bilmes SA (2011) Improving silica matrices for encapsulation of Escherichia coli using osmoprotectors. J Mater Chem 21:4546–4552

    Article  CAS  Google Scholar 

  • Premkumar JR, Sagi E, Rozen R, Belkin S, Modestov AD, Lev O (2002) Fluorescent bacteria encapsulated in sol–gel derived silicate films. Chem Mater 14:2676–2686

    Article  CAS  Google Scholar 

  • Prieto, Hidalgo, Rodríguez-Fernández, Serra, Llama (2002) Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier. Appl Microbiol Biotechnol 58:853–860

    Article  CAS  Google Scholar 

  • Raff J, Soltmann U, Matys S, Selenska-Pobell S, Böttcher H, Pompe W (2003) Biosorption of uranium and copper by biocers. Chem Mater 15:240–244

    Article  CAS  Google Scholar 

  • Ramachandran S, Coradin T, Jain P, Verma S (2009) Nostoc calcicola immobilized in silica-coated calcium alginate and silica gel for applications in heavy metal biosorption. SILICON 1(4):215–223

    Article  CAS  Google Scholar 

  • Schlegel HG, Kaltwasser H, Gottschalk G (1961) A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies. Arch Mikrobiol 38:209–222

    Article  CAS  Google Scholar 

  • Smith DM, Scherer GW, Anderson JM (1995) Shrinkage during drying of silica gel. J Non-Crystalline Solids 188(3):191–206

    Article  CAS  Google Scholar 

  • Sofie SW, Dogan F (2001) Freeze casting of aqueous alumina slurries with glycerol. J Am Ceram Soc 84(7):1459–1464

    Article  CAS  Google Scholar 

  • Soltmann U, Böttcher H (2008) Utilization of sol–gel ceramics for the immobilization of living microorganisms. J Sol-Gel Sci Technol 48(1):66–72

    Article  CAS  Google Scholar 

  • Soltmann U, Böttcher H, Koch D, Grathwohl G (2003) Freeze gelation: a new option for the production of biological ceramic composites (biocers). Mater Lett 57:2861–2865

    Article  CAS  Google Scholar 

  • Soltmann U, Matys S, Kieszig G, Pompe W, Böttcher H (2010) Algae-silica hybrid materials for biosorption of heavy metals. J Water Resour Prot 2(2):115–122

    Article  CAS  Google Scholar 

  • Tessema DA, Rosen R, Pedazur R, Belkin S, Gun J, Ekeltchik I, Lev O (2006) Freeze-drying of sol–gel encapsulated recombinant bioluminescent E. coli by using lyo-protectants. Sens Actuators B: Chem 113(2):768–773

    Article  Google Scholar 

  • Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73

    Article  CAS  Google Scholar 

  • Zhou L, Li G, An T, Fu J, Sheng G (2008) Recent patents on immobilized microorganism technology and its engineering application in wastewater treatment. Recent Pat Eng 2:28–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was done under the framework of German Federal Ministry of Education and Research (BMBF) Collaborative Project Grant No. 02WR0696 (Code: NANOKAT). Thus, the authors acknowledge contributions from all project partners. Some SEM micrographs were done by Dr. Sabine Matys. Mechanical tests were done at the Material Testing Laboratory under the direction of Dr. Brigit Vetter and technical assistance from Dip. Ing. Ruth Bläsner. Mr. Jochen Förster provided all other technical support during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Pannier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pannier, A., Mkandawire, M., Soltmann, U. et al. Biological activity and mechanical stability of sol–gel-based biofilters using the freeze-gelation technique for immobilization of Rhodococcus ruber . Appl Microbiol Biotechnol 93, 1755–1767 (2012). https://doi.org/10.1007/s00253-011-3489-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3489-7

Keywords

Navigation