Skip to main content
Log in

Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Efficient fermentation of xylose, which is abundant in hydrolysates of lignocellulosic biomass, is essential for producing cellulosic biofuels economically. While heterologous expression of xylose isomerase in Saccharomyces cerevisiae has been proposed as a strategy to engineer this yeast for xylose fermentation, only a few xylose isomerase genes from fungi and bacteria have been functionally expressed in S. cerevisiae. We cloned two bacterial xylose isomerase genes from anaerobic bacteria (Bacteroides stercoris HJ-15 and Bifidobacterium longum MG1) and introduced them into S. cerevisiae. While the transformant with xylA from B. longum could not assimilate xylose, the transformant with xylA from B. stercoris was able to grow on xylose. This result suggests that the xylose isomerase (BsXI) from B. stercoris is functionally expressed in S. cerevisiae. The engineered S. cerevisiae strain with BsXI consumed xylose and produced ethanol with a good yield (0.31 g/g) under anaerobic conditions. Interestingly, significant amounts of xylitol (0.23 g xylitol/g xylose) were still accumulated during xylose fermentation even though the introduced BsXI might not cause redox imbalance. We investigated the potential inhibitory effects of the accumulated xylitol on xylose fermentation. Although xylitol inhibited in vitro BsXI activity significantly (K I = 5.1 ± 1.15 mM), only small decreases (less than 10%) in xylose consumption and ethanol production rates were observed when xylitol was added into the fermentation medium. These results suggest that xylitol accumulation does not inhibit xylose fermentation by engineered S. cerevisiae expressing xylA as severely as it inhibits the xylose isomerase reaction in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilera J, Prieto JA (2001) The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Curr Genet 39(5–6):273–283

    Article  CAS  Google Scholar 

  • Amore R, Wilhelm M, Hollenberg CP (1989) The fermentation of xylose—an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl Microbiol Biotechnol 30(4):351–357

    Article  CAS  Google Scholar 

  • Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75(8):2304–2311

    Article  CAS  Google Scholar 

  • Cho KM, Yoo YJ, Kang HS (1999) δ-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb Technol 25(1–2):23–30

    Article  CAS  Google Scholar 

  • Chu BCH, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25(5):425–441

    Article  CAS  Google Scholar 

  • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66(8):3381–3386

    Article  CAS  Google Scholar 

  • Garcia-Vallve S, Romeu A, Palau J (2000) Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol 17(3):352–361

    Article  CAS  Google Scholar 

  • Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63(5):495–509

    Article  CAS  Google Scholar 

  • Jin Y-S, Jeffries TW (2004) Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab Eng 6(3):229–238

    Article  CAS  Google Scholar 

  • Jin YS, Ni H, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity. Appl Environ Microbiol 69(1):495–503

    Article  CAS  Google Scholar 

  • Kersters-Hilderson H, Callens M, Van Opstal O, Vangrysperre W, De Bruyne CK (1987) Kinetic characterization of d-xylose isomerases by enzymatic assays using d-sorbitol dehydrogenase. Enzyme Microb Technol 9(3):145–148

    Article  CAS  Google Scholar 

  • Kuhn A, van Zyl C, van Tonder A, Prior BA (1995) Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Appl Environ Microbiol 61(4):1580–1585

    Article  CAS  Google Scholar 

  • Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4(1):69–78

    Article  CAS  Google Scholar 

  • Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4(6):655–664

    Article  CAS  Google Scholar 

  • Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409

    Article  CAS  Google Scholar 

  • Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82(6):1067–1078

    Article  CAS  Google Scholar 

  • Moes CJ, Pretorius IS, van Zyl WH (1996) Cloning and expression of the Clostridium thermosulfurogenes d-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol Lett 18(3):269–274

    Article  CAS  Google Scholar 

  • Olsson L, Nielsen J (2000) The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilization of industrial media. Enzyme Microb Technol 26(9–10):785–792

    Article  CAS  Google Scholar 

  • Sarthy AV, McConaughy BL, Lobo Z, Sundstrom JA, Furlong CE, Hall BD (1987) Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol 53(9):1996–2000

    Article  CAS  Google Scholar 

  • Shim KW, Kim DH (2008) Cloning and expression of chondroitinase ac from Bacteroides stercoris hj-15. Protein Expr Purif 58(2):222–228

    Article  CAS  Google Scholar 

  • Tanino T, Hotta A, Ito T, Ishii J, Yamada R, Hasunuma T, Ogino C, Ohmura N, Ohshima T, Kondo A (2010) Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation. Appl Microbiol Biotechnol 88(5):1215–1221

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  Google Scholar 

  • Toivari MH, Salusjarvi L, Ruohonen L, Penttila M (2004) Endogenous xylose pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 70(6):3681–3686

    Article  CAS  Google Scholar 

  • Traff KL, Cordero RRO, van Zyl WH, Hahn-Hagerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67(12):5668–5674

    Article  CAS  Google Scholar 

  • Träff-Bjerre KL, Jeppsson M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2004) Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast 21(2):141–150

    Article  Google Scholar 

  • Walfridsson M, Anderlund M, Bao X, Hahn-Hagerdal B (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48(2):218–224

    Article  CAS  Google Scholar 

  • Wei YX, Zhang ZY, Liu C, Zhu YZ, Zhu YQ, Zheng H, Zhao GP, Wang S, Guo XK (2010) Complete genome sequence of Bifidobacterium longum JDM301. J Bacteriol 192(15):4076–4077

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by funding from Energy Biosciences Institute to Yong-Su Jin. Jin-Ho Choi is grateful for financial support through the National Research Foundation of Korea Grant funded by the Korean Government [NRF-2009-352-F00039].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Su Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, SJ., Kim, S.R., Choi, JH. et al. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Appl Microbiol Biotechnol 92, 77–84 (2011). https://doi.org/10.1007/s00253-011-3345-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3345-9

Keywords

Navigation