Skip to main content

Advertisement

Log in

Transcriptional changes associated with ethanol tolerance in Saccharomyces cerevisiae

  • Genomics, Transcriptomics, Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Saccharomyces spp. are widely used for ethanol production; however, fermentation productivity is negatively affected by the impact of ethanol accumulation on yeast metabolic rate and viability. This study used microarray and statistical two-way ANOVA analysis to compare and evaluate gene expression profiles of two previously generated ethanol-tolerant mutants, CM1 and SM1, with their parent, Saccharomyces cerevisiae W303-1A, in the presence and absence of ethanol stress. Although sharing the same parentage, the mutants were created differently: SM1 by adaptive evolution involving long-term exposure to ethanol stress and CM1 using chemical mutagenesis followed by adaptive evolution-based screening. Compared to the parent, differences in the expression levels of genes associated with a number of gene ontology categories in the mutants suggest that their improved ethanol stress response is a consequence of increased mitochondrial and NADH oxidation activities, stimulating glycolysis and other energy-yielding pathways. This leads to increased activity of energy-demanding processes associated with the production of proteins and plasma membrane components, which are necessary for acclimation to ethanol stress. It is suggested that a key function of the ethanol stress response is restoration of the NAD+/NADH redox balance, which increases glyceraldehyde-3-phosphate dehydrogenase activity, and higher glycolytic flux in the ethanol-stressed cell. Both mutants achieved this by a constitutive increase in carbon flux in the glycerol pathway as a means of increasing NADH oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilera A, Benitez T (1986) Ethanol-sensitive mutants of Saccharomyces cerevisiae. Arch Microbiol 143:337–344

    Article  CAS  Google Scholar 

  • Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498:98–103

    Article  CAS  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  Google Scholar 

  • Belenky P, Bogan KL, Brenner C (2007) NAD+ metabolism in health and disease. Trends Biochem Sci 32:12–19

    Article  CAS  Google Scholar 

  • Birch RM, Walker GM (2000) Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme Microb Technol 26:678–687

    Article  CAS  Google Scholar 

  • Chandler M, Stanley GA, Rogers P, Chambers P (2004) A genomic approach to defining the ethanol stress response in the yeast Saccharomyces cerevisiae. Ann Microbiol 54:427–454

    CAS  Google Scholar 

  • Collart MA, Oliviero S (1997) Preparation of yeast RNA. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 13.12.1–13.12.5

    Google Scholar 

  • Demain AL (2009) Biosolutions to the energy problem. J Ind Microbiol Biotechnol 36:319–332

    Article  CAS  Google Scholar 

  • Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H (2006) The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6:744–750

    Article  CAS  Google Scholar 

  • Hu XH, Wang MH, Tan T, Li JR, Yang H, Leach L, Zhang RM, Luo ZW (2007) Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 175:1479–1487

    Article  CAS  Google Scholar 

  • Kubota S, Takeo I, Kume K, Kanai M, Shitamukai A, Mizunuma M, Miyakawa T, Shimoi H, Iefuji H, Hirata D (2004) Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci Biotechnol Biochem 68:968–972

    Article  CAS  Google Scholar 

  • Marza E, Camougrand N, Manon S (2002) Bax expression protects yeast plasma membrane against ethanol-induced permeabilization. FEBS Lett 521:47–52

    Article  CAS  Google Scholar 

  • Moraitis C, Curran BP (2007) Can the different heat shock response thresholds found in fermenting and respiring yeast cells be attributed to their differential redox states? Yeast 24:653–666

    Article  CAS  Google Scholar 

  • Ogawa Y, Nitta A, Uchiyama H, Imamura T, Shimoi H, Ito K (2000) Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J Biosci Bioeng 90:313–320

    CAS  Google Scholar 

  • Panozzo C, Nawara M, Suski C, Kucharczyka R, Skoneczny M, Becam AM, Rytka J, Herbert CJ (2002) Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae. FEBS Lett 517:97–102

    Article  CAS  Google Scholar 

  • Replogle K, Hovland L, Rivier DH (1999) Designer deletion and prototrophic strains derived from Saccharomyces cerevisiae strain W303-1a. Yeast 15:1141–1149

    Article  CAS  Google Scholar 

  • Rikhvanov EG, Varakina NN, Rusaleva TM, Rachenko EI, Knorre DA, Voinikov VK (2005) Do mitochondria regulate the heat-shock response in Saccharomyces cerevisiae? Curr Genet 48:44–59

    Article  CAS  Google Scholar 

  • Robinson MD, Grigull J, Mohammad N, Hughes TR (2002) FunSpec: a web-based cluster interpreter for yeast. BMC Bioinform 3:35

    Article  Google Scholar 

  • Stanley GA, Pamment NB (1993) Transport and intracellular accumulation of acetaldehyde in Saccharomyces cerevisiae. Biotechnol Bioeng 42:24–29

    Article  CAS  Google Scholar 

  • Stanley GA, Hobley TJ, Pamment NB (1997) Effect of acetaldehyde on Saccharomyces cerevisiae and Zymomonas mobilis subjected to environmental shocks. Biotechnol Bioeng 53:71–78

    Article  CAS  Google Scholar 

  • Stanley D, Fraser S, Chambers PJ, Rogers P, Stanley GA (2010a) Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 37:139–149

    Article  CAS  Google Scholar 

  • Stanley D, Bandara A, Fraser S, Chambers P, Stanley G (2010b) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol. doi:10.1111/j.1365-2672.2009.04657.x

    Google Scholar 

  • Takahashi T, Shimoi H, Ito K (2001) Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae. Mol Genet Genomics 265:1112–1119

    Article  CAS  Google Scholar 

  • Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630

    Article  CAS  Google Scholar 

  • Ueom J, Kwon S, Kim S, Chae Y, Lee K (2003) Acquisition of heat shock tolerance by regulation of intracellular redox states. Biochim Biophys Acta 1642:9–16

    Article  CAS  Google Scholar 

  • Valadi H, Valadi A, Ansell R, Gustafsson L, Adler L, Norbeck J, Blomberg A (2004) NADH-reductive stress in Saccharomyces cerevisiae induces the expression of the minor isoform of glyceraldehyde-3-phosphate dehydrogenase (TDH1). Curr Genet 45:90–95

    Article  CAS  Google Scholar 

  • van Voorst F, Houghton-Larsen J, Jonson L, Kielland-Brandt MC, Brandt A (2006) Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23:351–359

    Article  Google Scholar 

  • Walker GM (1998) Yeast physiology and biotechnology. Wiley, England

    Google Scholar 

  • Yang YH, Dudoit S, Luu P, Speed TP (2001) Normalization for cDNA microarray. In: Bittner ML, Chen Y, Dorsel AN, Dougherty ER (eds) Microarrays: optical technologies and informatics. SPIE, Society for Optical Engineering, San Jose, pp 141–152

    Google Scholar 

  • Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H (2009) Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9:32–44

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Australian Government for providing an Australian Postgraduate Award to support Dragana Stanley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Stanley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanley, D., Chambers, P.J., Stanley, G.A. et al. Transcriptional changes associated with ethanol tolerance in Saccharomyces cerevisiae . Appl Microbiol Biotechnol 88, 231–239 (2010). https://doi.org/10.1007/s00253-010-2760-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2760-7

Keywords

Navigation