Skip to main content
Log in

Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilms on biocathodes can catalyze the cathodic oxygen reduction and accordingly guarantee high cathode redox potentials. The present research assessed the use of biocathodes in full-sediment microbial fuel cells. Carbon felt-based biocathodes were evaluated in freshwater systems, and an extension of their application to brackish systems and/or stainless steel webs as base material was considered. Efficient biocathodes could be developed within days through inoculation with active microorganisms. Carbon felt was found most suited for the biocathodes in freshwater with increased performance at salinities around 80–250 mM. Maximum long-term performance reached 12.3 µW cm−2 cathode. The relative benefit of stainless steel seemed to increase with increasing salinity. A combination of stainless steel cathodes with biofilms could, however, also result in decreased electrical performance. In an efficiently catalyzing cathodic biofilm, an enrichment with an uncultured Proteobacterium—previously correlated with steel waste—was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394

    Article  CAS  Google Scholar 

  • Bergel A, Féron D, Mollica A (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7:900–904

    Article  CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  CAS  Google Scholar 

  • Boon N, De Windt W, Verstraete W, Top EM (2002) Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16 S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol Ecol 39:101–112

    CAS  Google Scholar 

  • Chen GW, Choi SJ, Lee TH, Lee GY, Cha JH, Kim CW (2008) Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl Microbiol Biotechnol 79:379–388

    Article  CAS  Google Scholar 

  • Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569

    Article  CAS  Google Scholar 

  • De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103:296–304

    Article  Google Scholar 

  • De Schamphelaire L, van den Bossche L, Dang HS, Höfte M, Boon N, Rabaey K, Verstraete W (2008) Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol 42:3053–3058

    Article  Google Scholar 

  • Dumas C, Basseguy R, Bergel A (2008) Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim Acta 53:2494–2500

    Article  CAS  Google Scholar 

  • Dumas C, Mollica A, Féron D, Basséguy R, Etcheverry L, Bergel A (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53:468–473

    Article  CAS  Google Scholar 

  • Erable B, Vandecandelaere I, Faimali M, Delia M-L, Etcheverry L, Vandamme P, Bergel A (2010) Marine aerobic biofilm as biocathode catalyst. Bioelectrochemistry 78:51–56

    Article  CAS  Google Scholar 

  • Faimali M, Chelossi E, Garaventa F, Corrà C, Greco G, Mollica A (2008) Evolution of oxygen reduction current and biofilm on stainless steels cathodically polarised in natural aerated seawater. Electrochim Acta 54:148–153

    Article  CAS  Google Scholar 

  • Freguia S, Rabaey K, Yuan Z, Keller J (2007) Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim Acta 53:598–603

    Article  CAS  Google Scholar 

  • Freitas DB, Reis MP, Freitas LM, Assis PS, Chartone-Souza E, Nascimento AMA (2008) Molecular bacterial diversity and distribution in waste from a steel plant. Can J Microbiol 54:996–1005

    Article  CAS  Google Scholar 

  • Hasvold O, Henriksen H, Melvaer E, Citi G, Johansen BO, Kjonigsen T, Galetti R (1997) Sea-water battery for subsea control systems. J Power Sources 65:253–261

    Article  CAS  Google Scholar 

  • He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanal 18:2009–2015

    Article  CAS  Google Scholar 

  • He Z, Shao HB, Angenent LT (2007) Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosens Bioelectron 22:3252–3255

    Article  CAS  Google Scholar 

  • Holmes DE, Bond DR, O’Neill RA, Reimers CE, Tender LR, Lovley DR (2004) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microbial Ecol 48:178–190

    Google Scholar 

  • Kielemoes J, Hammes F, Verstraete W (2000a) Measurement of microbial colonisation of two types of stainless steel. Environ Technol 21:831–843

    CAS  Google Scholar 

  • Kielemoes J, De Boever P, Verstraete W (2000b) Influence of denitrification on the corrosion of iron and stainless steel powder. Environ Sci Technol 34:663–671

    Article  CAS  Google Scholar 

  • Little BJ, Lee JS, Ray RI (2008) The influence of marine biofilms on corrosion: a concise review. Electrochim Acta 54:2–7

    Article  CAS  Google Scholar 

  • Liu H, Cheng SA, Logan BE (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39:5488–5493

    Article  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  Google Scholar 

  • Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR (2006) Harvesting energy from the marine sediment-water interface II - Kinetic activity of anode materials. Biosens Bioelectron 21:2058–2063

    Article  CAS  Google Scholar 

  • MacArthur JV (2006) Microbial ecology: an evolutionary approach. Academic, Burlington

    Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16s ribosomal RNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Percival SL, Knapp JS, Edyvean RGJ, Wales DS (1998) Biofilms, mains water and stainless steel. Water Res 32:2187–2201

    Article  CAS  Google Scholar 

  • Pham TH, Jang JK, Chang IS, Kim BH (2004) Improvement of cathode reaction of a mediatorless microbial fuel cell. J Microbiol Biotechnol 14:324–329

    CAS  Google Scholar 

  • Rabaey K, Read ST, Clauwaert P, Freguia S, Bond PL, Blackall LL, Keller J (2008) Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J 2:519–527

    Article  CAS  Google Scholar 

  • Reimers CE, Girguis P, Stecher HA, Tender LM, Ryckelynck N, Whaling P (2006) Microbial fuel cell energy from an ocean cold seep. Geobiology 4:123–136

    Article  CAS  Google Scholar 

  • Ryckelynck N, Stecher HA, Reimers CE (2005) Understanding the anodic mechanism of a seafloor fuel cell: interactions between geochemistry and microbial activity. Biogeochemistry 76:113–139

    Article  Google Scholar 

  • Schaetzle O, Barrière F, Schröder U (2009) An improved microbial fuel cell with laccase as the oxygen reduction catalyst. Energy Environ Sci 2:96–99

    Article  CAS  Google Scholar 

  • Tartakovsky B, Guiot SR (2006) A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors. Biotechnol Prog 22:241–246

    Article  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Google Scholar 

  • Wilcock WSD, Kauffman PC (1997) Development of a seawater battery for deep-water applications. J Power Sources 66:71–75

    Article  CAS  Google Scholar 

  • Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I (2006) Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol 40:5193–5199

    Article  CAS  Google Scholar 

Download references

Acknowledgements

LDS was supported through a PhD grant from the Bijzonder Onderzoeks Fonds of Ghent University (grant no. 01D24405). The useful comments of Nico Boon and Jan Arends are kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Verstraete.

Electronic supplementary materials

Supplementary material (Table S1, Table S2, Fig. S1 and Fig. S2) can be found in the Online Resource.

ESM 1

(PDF 409 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Schamphelaire, L., Boeckx, P. & Verstraete, W. Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells. Appl Microbiol Biotechnol 87, 1675–1687 (2010). https://doi.org/10.1007/s00253-010-2645-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2645-9

Keywords

Navigation