Skip to main content
Log in

Microbially induced diseases of Agaricus bisporus: biochemical mechanisms and impact on commercial mushroom production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The button mushroom, Agaricus bisporus (Lange) Imbach, the most common cultivated mushroom, is susceptible to a wide range of virus, bacterial, and fungal diseases. However, only some diseases were studied for the mechanisms involved in the host–microorganism interaction. This review deals with biochemical mechanisms related to cavity disease (Burkholderia gladioli) and to the interaction between A. bisporus and the causal agents responsible for the most severe diseases, namely the bacteria Pseudomonas tolaasii and Pseudomonas reactans and the fungi Trichoderma aggressivum and Lecanicillium fungicola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amey RC, Mills PR, Bailey A, Foster GD (2003) Investigating the role of a Verticillium fungicola β-1,6-glucanase during infection of Agaricus bisporus using targeted gene disruption. Fungal Genet Biol 39:264–275

    Article  CAS  Google Scholar 

  • Anderson MG, Beyer DM, Wuest PJ (2001) Yield comparison of hybrid Agaricus mushroom strains as a measure of resistance to Trichoderma green mould. Plant Dis 85:731–734

    Article  Google Scholar 

  • Angelini P, Pagiotti R, Granetti B (2008) Effect of antimicrobial activity of Melaleuca alternifolia oil on antagonistic potential of Pleurotus species against Trichoderma harzianum in dual culture. World J Microbiol Biotechnol 24:197–202

    Article  CAS  Google Scholar 

  • Baral A, Fox PF (1997) Isolation and characterization of an extracellular lipase from Pseudomonas tolaasii. Food Chem 58:33–38

    Article  CAS  Google Scholar 

  • Baral A, Fox PF, O’Connor TP (1995) Isolation and characterization of an extracellular proteinase from Pseudomonas tolaasii. Phytochemistry 39:757–762

    Article  CAS  Google Scholar 

  • Bassarello C, Lazzaroni S, Bifulco G, Lo Cantore P, Iacobellis NS, Riccio R, Gomez-Paloma L, Evidente A (2004) Tolaasins A-E, five new lipodepsipeptides produced by Pseudomonas tolaasii. J Nat Prod 67:811–816

    Article  CAS  Google Scholar 

  • Bernardo D, Pérez Cabo A, Novaes-Ledieu M, García Mendoza C (2004) Verticillium disease or “dry bubble” of cultivated mushrooms: the Agaricus bisporus lectin recognizes and binds the Verticillium fungicola cell wall glucogalactomannan. Can J Microbiol 50:729–735

    Article  CAS  Google Scholar 

  • Boiko OA, Mel’nichuk MD, Ivanova TV (2009) Spread, diagnosis, and prevention of diseases of the button mushroom. Russian Agric Sci 35:94–95

    Article  Google Scholar 

  • Bonnen AM, Anton LH, Orth AB (1994) Lignin-degrading enzymes of the commercial button mushroom, Agaricus bisporus. Appl Environ Microbiol 60:960–965

    CAS  Google Scholar 

  • Calonje M, García Mendoza C, Galan B, Novaes-Ledieu M (1997) Enzymic activity of the mycoparasite Verticillium fungicola on Agaricus bisporus fruit body cell walls. Microbiology 143:2999–3006

    Article  CAS  Google Scholar 

  • Calonje M, García Mendoza C, Pérez Cabo A, Bernardo D, Novaes-Ledieu M (2000) Interaction between the mycoparasite Verticillium fungicola and the vegetative mycelial phase of Agaricus bisporus. Mycol Res 104:988–992

    Article  Google Scholar 

  • Calonje M, Bernardo D, Novaes-Ledieu M, García Mendoza C (2002) Properties of a hydrophobin from the mycoparasitic fungus Verticillium fungicola. Can J Microbiol 48:1030–1034

    Article  CAS  Google Scholar 

  • Cho KH, Kim YK (2003) Two types of channel formation of tolaasin, a Pseudomonas peptide toxin. FEMS Microbiol Lett 221:221–226

    Article  CAS  Google Scholar 

  • Choi TK, Wang HS, Kim YK (2009) Inhibitory effect of Ni2+ on the tolaasin-induced hemolysis. J Appl Biol Chem 52:28–32

    Article  CAS  Google Scholar 

  • Cole ALJ, Skellerup MV (1986) Ultrastructure of the interaction of Agaricus bisporus and Pseudomonas tolaasii. Trans Br Mycol Soc 87:314–316

    Article  Google Scholar 

  • Comai L, Kosuge T (1983) Transposable element that causes mutations in a plant pathogenic Pseudomonas sp. J Bacteriol 154:1162–1167

    CAS  Google Scholar 

  • Coraiola M, Lo Cantore P, Lazzaroni S, Evidente A, Iacobellis NS, Dalla Serra M (2006) WLIP and tloaasin I, lipodepsipeptides from Pseudomonas reactans and Pseudomonas tolaasii, permealise model membranes. Biochim Biophys Acta 1758:1713–1722

    Article  CAS  Google Scholar 

  • Cumming RC, Andon NL, Haynes PA, Park M, Fischer WH, Schubert D (2004) Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem 279:21749–21758

    Article  CAS  Google Scholar 

  • Dawoud MEA, Eweis M (2006) Phytochemical control of edible mushrooms pathogenic bacteria. J Food Agric Environ 4:321–324

    Google Scholar 

  • Dragt JW, Geels FP, De Bruijn WC, Van Griensven LJLD (1996) Intracellular infections of the cultivated mushroom Agaricus bisporus by the mycoparasite Verticillium fungicola var. fungicola. Mycol Res 100:1082–1086

    Article  Google Scholar 

  • Eastwood DC, Challen MP, Zhang C, Jenkins H, Henderson J, Burton KS (2008) Hairpin-mediated down-regulation of the urea cycle enzyme arginosuccinate lyase in Agaricus bisporus. Mycol Res 112:708–716

    Article  CAS  Google Scholar 

  • Ellendorf U, Fradin EF, de Jonge R, Thomma BPHJ (2009) RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J Exp Bot 60:591–602

    Article  CAS  Google Scholar 

  • Fletcher JT, White PF, Gaze RH (1989) Mushrooms: pest and disease control, 2nd edn. Intercept ed., Athenæum Press, GB, p 174

  • Gallucci MN, Oliva M, Casero C, Dambolena J, Luna A, Zygadlo J, Demo M (2009) Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragr J 24:348–354

    Article  CAS  Google Scholar 

  • García Mendoza G, Bernardo D, Pérez Cabo A, Novaes-Ledieu M (2003) Mechanisms involved in the Verticillium fungicola mycoparasitism on Agaricus bisporus fruit bodies: Verticillium disease or “dry bubble” of cultivated mushrooms. Recent Res Dev Microbiol 7:269–278

    Google Scholar 

  • Gea FJ (2009) First report of Trichoderma pleurotum on oyster mushroom crops in Spain. J Plant Pathol 91:504

    Google Scholar 

  • Geels FP, Hesen LPW, van Griensven LJLD (2008) Brown discolouration of mushrooms caused by Pseudomonas agarici. J Phytopath 140:249–259

    Article  Google Scholar 

  • Gill WM, Cole ALJ (1992) Cavity disease of Agaricus bitorquis caused by Pseudomonas cepacia. Can J Microbiol 38:394–397

    Google Scholar 

  • Gill WM, Tsuneda A (1997) The interaction of the soft rot bacterium Pseudomonas gladioli pv. agaricicola with Japanese cultivated mushrooms. Can J Microbiol 43:639–648

    Article  CAS  Google Scholar 

  • Glamočlija J, Soković M, Ljaljević-Grbić M, Vukojević J, Milenković I, van Griensven L (2008) Morphological characteristics and mycelial compatibility of different Mycogone perniciosa isolates. J Microsc 232:489–492

    Article  Google Scholar 

  • Godfrey SAC, Harrow SA, Marshall JW, Klena JD (2001) Characterization by 16 S rRNA sequence analysis of pseudomonads causing blotch disease of cultivated Agaricus bisporus. Appl Environ Microbiol 67:4316–4323

    Article  CAS  Google Scholar 

  • Grogan HM (2008) Challenges facing mushroom disease control in the 21th century. In: Lelley JI, Buswell JA (eds) Proceedings of the sixth international conference on mushroom biology and mushroom products. Bonn, Germany, pp 120–127

    Google Scholar 

  • Grogan HM, Adie BAT, Gaze RH, Challen MP, Mills PR (2003) Double-stranded RNA elements associated with the MVX disease of Agaricus bisporus. Mycol Res 107:147–154

    Article  CAS  Google Scholar 

  • Guthrie JL, Castle AL (2006) Chitinase production during interaction of Trichoderma aggressivum and Agaricus bisporus. Can J Microbiol 52:961–967

    Article  CAS  Google Scholar 

  • Hammond JBW (1978) Carbohydrate catabolism in harvested mushrooms. Phytochemical 17:1717–1719

    Article  CAS  Google Scholar 

  • Hatvani L, Antal Z, Manczinger L, Szekeres A, Druzhinina IS, Kubicek CP, Nagy A, Nagy E, Vágvölgyi C, Kredics L (2007) Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology 97:532–537

    Article  CAS  Google Scholar 

  • Hutchinson ML, Johnsone K (1993) Evidence for the involvement of the surface active properties of the extracellular toxin tolaasin in the manifestation of brown blotch disease symptoms by Pseudomonas tolaasii on Agaricus bisporus. Physiol Mol Plant Pathol 42:373–384

    Article  Google Scholar 

  • Iacobellis NS, Lo Cantore P (2003) Pseudomonasreactans” a new pathogen of cultivated mushrooms. In: Iacobellis NS, Collmer A, Hutcheson SW, Mansfield JW, Morris CE, Murillo J, Schaad NW, Stead DE, Surico G, Ullrich MS (eds) Presentations from the 6th international conference on Pseudomonas syringae and related pathogens. Maratea, Italy, pp 595–605

    Google Scholar 

  • Inbar J, Chet I (1995) The role of recognition in the induction of specific chitinases during mycoparasitism by Trichoderma harzianum. Microbiology (Reading) 141:2823–2829

    Article  CAS  Google Scholar 

  • Inglis PW, Burden JL, Peberdy JF (1996) Evidence for the association of the enteric bacterium Ewingella americana with internal stipe necrosis of Agaricus bisporus. Microbiology 142:3253–3260

    Article  CAS  Google Scholar 

  • Jiang JH, Ding LS, Michailides TJ, Li HY, Ma ZH (2009) Molecular characterization of field azoxystrobin-resistant isolates of Botrytis cinerea. Pesticide Biochem Physiol 93:72–76

    Article  CAS  Google Scholar 

  • Juarez del Carmen S, Largeteau-Mamoun ML, Rousseau T, Regnault-Roger C, Savoie J-M (2002) Genetic and physiological variation in isolates of Verticillium fungicola causing dry bubble disease of the cultivated button mushroom, Agaricus bisporus. Mycol Res 106:1163–1170

    Article  CAS  Google Scholar 

  • Kerrigan RW (2000) A brief history of marker selection in Agaricus bisporus. Mushroom Sci 15:183–190

    CAS  Google Scholar 

  • Kerrigan RW, Velckro AJ Jr, Thomas JL, McGradt JS, Chisholm CM, Wach MP (2004) Diverse retrotransposons in Agaricus bisporus. Mushroom Sci 16:75–83

    CAS  Google Scholar 

  • Komon-Zelazowska M, Bisset J, Zafari D, Hatvani L, Manczinger L, Woo SR, Lorito M, Kredics L, Kubicek CP, Druzhinina IS (2007) Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Appl Environ Microbiol 73:7415–7426

    Article  CAS  Google Scholar 

  • Krupke OA, Castle AJ, Rinker DL (2003) The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Mycol Res 107:1467–1475

    Article  Google Scholar 

  • Largeteau ML, Rodier A, Rousseau T, Juarez del Carmen S, Védie R, Savoie J-M (2004) Agaricus susceptibility to Verticillium fungicola. Mushroom Sci 16:515–523

    Google Scholar 

  • Largeteau ML, Baars JPP, Juarez del Carmen S, Regnault-Roger C, Savoie J-M (2005) Wild strains of Agaricus bisporus: a source of tolerance to dry bubble disease. In: Pisabarro AG, Ramírez L (eds) Genetics and cellular biology of basidiomycetes VI. Univ. Pública de Navarra, Spain, pp 77–87

    Google Scholar 

  • Largeteau ML, Regnault-Roger C, Savoie J-M (2007) Verticillium disease of Agaricus bisporus: variations in host contribution to total fungal DNA in relation to symptom heterogeneity. Eur J Plant Pathol 118:155–164

    Article  Google Scholar 

  • Largeteau ML, Latapy C, Minvielle N, Regnault-Roger C, Savoie J-M (2010) Expression of phenol oxidase and heat-shock genes during the development of Agaricus bisporus fruiting bodies, healthy and infected by Lecanicillium fungicola. Appl Microbiol Biotechnol 85:1499–1507

    Article  CAS  Google Scholar 

  • Lee Y, Woo Y, Lee S, Kang K, Yong Y, Kim JK, Kim KP, Kim M-H, Kim Y-K, Lim Y (2009) Identification of compounds exhibiting inhibitory activity toward the Pseudomonas tolaasii toxin tolaasin I using in silico docking calculations, NMR binding assays, and in vitro haemolytic activity assays. Bioorg Med Chem Lett 19:4321–4324

    Article  CAS  Google Scholar 

  • Lincoln SP, Fermor TR, Stead DE, Sellwood JE (1991) Bacteria soft rot of Agaricus bisporus. Plant Pathol 40:136–144

    Article  Google Scholar 

  • Lincoln SP, Fermor TR, Tindall BJ (1999) Janthinobacterium agaricidamnosum sp. nov., a soft rot pathogen of Agaricus bisporus. Int J Syst Bacteriol 49:1577–1589

    Article  CAS  Google Scholar 

  • Lo cantore P, Iacobellis NS (2004) First report of brown discolouration of Agaricus bisporus caused by Pseudomonas agarici in southern Italy. Phytopathol Mediterr 43:35–38

    Google Scholar 

  • Lo Cantore P, Lazzaroni S, Coraiola M, Dalla Serra M, Cafarchia C, Evidente A, Iacobellis NS (2006) Biological characterization of white line-inducing principle (WLIP) produced by Pseudomonas reactans NCPPB1311. Mol Plant Microb Interact 19:1113–1120

    Article  CAS  Google Scholar 

  • Mamoun M, Moquet F, Laffitte J, Olivier J-M (1997) Pseudomonas tolaasii: extra-genomic factor mediates toxin production and efficiency. FEMS Microbiol Lett 153:215–219

    Article  CAS  Google Scholar 

  • Mamoun M, Moquet F, Savoie J-M, Devesse C, Ramos Guedes-Lafargue M, Olivier J-M, Arpin N (1999) Agaricus bisporus susceptibility to bacterial blotch in relation to environment: biochemical studies. FEMS Microbiol Lett 181:131–136

    Article  CAS  Google Scholar 

  • Mamoun M, Savoie J-M, Olivier J-M (2000a) Interaction between the pathogen Trichoderma harzianum Th2 and Agaricus bisporus in mushroom compost. Mycologia 92:233–240

    Article  Google Scholar 

  • Mamoun M, Iapicco R, Savoie J-M, Olivier J-M (2000b) Green mould disease in France: Trichoderma harzianum Th2 and other species causing damage on mushroom farms. Mushroom Sci 15:625–632

    Google Scholar 

  • Mills PR, Fermor T, Muthumeenakshi S, Lincoln S (2000) Cell wall degrading enzymes produced by Verticillium spp. and their relationship to infection in Agaricus bisporus. Mushroom Sci 15:601–605

    CAS  Google Scholar 

  • Moquet F, Desmerger C, Mamoun M, Ramos Guedes-Lafargue M, Olivier J-M (1999) A quantitative trait locus of Agaricus bisporus resistance to Pseudomonas tolaasii is closely linked to natural cap colour. Fungal Genet Biol 28:34–42

    Article  CAS  Google Scholar 

  • Mortishire-Smith RJ, Nutkins JC, Packman LC, Brodey CL, Rainey PB, Johnstone K, Williams DH (1991) Determination of the structure of an extracellular peptide produced by the mushroom saprotroph Pseudomonasreactans”. Tetrahedron 47:3645–3654

    Article  CAS  Google Scholar 

  • Mumpuni A, Sharma HSS, Brown AE (1998) Effect of metabolites produced by Trichoderma harzianum biotypes and Agaricus bisporus on their respective growth radii in culture. Appl Environ Microbiol 12:5053–5056

    Google Scholar 

  • Munsch P, Olivier J-M (1995) Biocontrol of bacterial blotch of the cultivated mushroom with lytic phages: some practical considerations. Mushroom Sci 14:595–602

    Google Scholar 

  • Munsch P, Alatossava T, Marttinen N, Meyer J-M, Christen R, Gardan L (2002) Pseudomonas costantinii sp. nov., another causal agent of brown blotch disease, isolated from cultivated mushroom sporophores in Finland. Int J Syst Evol Microbiol 52:1973–1983

    Article  CAS  Google Scholar 

  • Murata H, Tsukamoto T, Shirata A (1998) rtpA, a gene encoding a bacterial two-component sensor kinase, determines pathogenic traits of Pseudomonas tolaasii, the causal agent of brown blotch disease of a cultivated mushroom, Pleurotus ostreatus. Mycoscience 39:261–271

    Article  CAS  Google Scholar 

  • Nutkins JC, Mortishire-Smith RJ, Packman LC, Brodey CL, Rainey PB, Johnstone K, Williams DH (1991) Structure determination of tolaasin, an extra cellular lipodepsipeptide produced by the mushroom pathogen Pseudomonas tolaasii Paine. J Am Chem Soc 113:2621–2627

    Article  CAS  Google Scholar 

  • Ospina-Giraldo MD, Royse DJ, Thon MR, Chen X, Romaine CP (1998) Phylogenetic relationships of Trichoderma harzianum causing mushroom green mold in Europe and North America to other species of Trichoderma from world-wide sources. Mycologia 90:76–81

    Article  Google Scholar 

  • Rainey PB, Brodey CL, Johnstone K (1991) Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii. Physiol Mol Plant Pathol 39:57–70

    Article  CAS  Google Scholar 

  • Rainey PB, Brodey CL, Johnstone K (1993) Identification of a gene cluster encoding three high-molecular-weight proteins, which is required for synthesis of tolaasin by the mushroom pathogen Pseudomonas tolaasii. Mol Microbiol 8:643–652

    Article  CAS  Google Scholar 

  • Rasooli I, Mirmostafa SA (2002) Antibacterial properties of Thymus pubescens and Thymus serpyllum essential oils. Fitoterapia 73:244–250

    Article  CAS  Google Scholar 

  • Rinker DL, Alm G (2000) Management of green mould disease in Canada. Mushroom Sci 15:617–623

    Google Scholar 

  • Roy Chowdhury P, Heineman JA (2006) The general secretory pathway of Burkholderia gladioli pv. agaricicola BG164R is necessary for cavity disease in white button mushrooms. Appl Environ Microbiol 72:3558–3565

    Article  CAS  Google Scholar 

  • Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94:146–170

    Article  Google Scholar 

  • Savoie J-M (2008) Reactive oxygen species and the strategy of antioxidant defence in mushrooms. In: Lelley JI, Buswell JA (eds) Proceedings of the sixth international conference on mushroom biology and mushroom products. Bonn, Germany, pp 8–20

    Google Scholar 

  • Savoie J-M, Largeteau M (2004) Hydrogen peroxide concentrations detected in Agaricus bisporus sporocarps and relation with their susceptibility to the pathogen Verticillium fungicola. FEMS Microbiol Lett 237:311–315

    CAS  Google Scholar 

  • Savoie J-M, Mata G (1999) The antagonistic action of Trichoderma sp. hyphae to Lentinula edodes hyphae changes lignocellulolytic activities during cultivation in wheat straw. World J Microbiol Biotechnol 15:369–373

    Article  Google Scholar 

  • Savoie J-M, Iapicco R, Largeteau-Mamoun M (2001a) Factors influencing the competitive saprophytic ability of Trichoderma harzianum Th2 in mushroom (Agaricus bisporus) compost. Mycol Res 105:1348–1356

    Article  CAS  Google Scholar 

  • Savoie J-M, Mata G, Mamoun M (2001b) Variability in brown line formation and extracellular laccase production during interaction between white-rot basidiomycetes and Trichoderma harzianum biotype Th2. Mycologia 93:243–248

    Article  CAS  Google Scholar 

  • Savoie J-M, Juarez del Carmen S, Billette C, Largeteau-Mamoun M (2004) Oxidative processes in Agaricus bisporus dry bubble. Mushroom Sci 16:527–535

    CAS  Google Scholar 

  • Seaby DA (1996) Investigation of the epidemiology of green mould of mushroom (Agaricus bisporus) compost caused by Trichoderma harzianum. Plant Pathol 45:913–923

    Google Scholar 

  • Selim S (2009) Allele-specific real-time PCR for quantification and discrimination of sterol 14 alpha-demethylation-inhibitor-resistant genotypes of Mycosphaerelle graminicola. J Plant Pathol 91:391–400

    CAS  Google Scholar 

  • Shamshad A, Clift AD, Mansfield S (2009) Imazalil, manganese prochloraz and carbendazim treatments do not affect the yield of Agaricus bisporus, hybrid strain Sylvan A15 in New South Wales. Plant Prot Q 24:50–54

    CAS  Google Scholar 

  • Silar P (2005) Peroxide accumulation and cell death in filamentous fungi induced by contact with a contestant. Mycol Res 109:137–149

    Article  CAS  Google Scholar 

  • Singh M, Singh RP, Chaube HS (2000) Siderophore producing bacteria as potential biocontrol agents of mushroom diseases. Mushroom Sci 15:577–585

    Google Scholar 

  • Soković M, van Griensven LJLD (2006) Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. Eur J Plant Pathol 116:211–224

    Article  CAS  Google Scholar 

  • Soler-Rivas C, Jolivet S, Arpin N, Olivier JM, Wichers HJ (1999a) Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiol Rev 23:591–614

    Article  CAS  Google Scholar 

  • Soler-Rivas C, Arpin N, Olivier J-M, Wichers HJ (1999b) WLIP, a lipodepsipeptide of Pseudomonas ‘reactans’, as inhibitor of the symptoms of the brown blotch disease of Agaricus bisporus. J Appl Microbiol 86:635–641

    Article  CAS  Google Scholar 

  • Soler-Rivas C, Arpin N, Olivier J-M, Wichers HJ (2000) Discoloration and tyrosinase activity in Agaricus bisporus fruit bodies infected with various pathogens. Mycol Res 104:351–356

    Article  CAS  Google Scholar 

  • Soler-Rivas C, Moller AC, Arpin N, Olivier J-M, Wichers HJ (2001) Induction of a tyrosinase mRNA in Agaricus bisporus upon treatment wit a tolaasin preparation from Pseudomonas tolaasii. Physiol Mol Plant Pathol 58:95–99

    Article  CAS  Google Scholar 

  • Sonnenberg ASM, Baars JJP, Mikosch TS (1999) Abr1, a transposon-like element in the genome of the mushroom Agaricus bisporus (Lange) Imbach. Appl Environ Microbiol 65:3347–3353

    CAS  Google Scholar 

  • Sonnenberg ASM, Baars JJP, Hendrick PM, Kerrigan RW (2005) Breeding mushrooms: state of the art. Acta Edulis Fungi 12:163–173

    Google Scholar 

  • Szczech M, Staniaszek M, Habdas H, Uliński Z, Szymański J (2008) Trichoderma spp.—the cause of green mold on polish mushroom farms. Veg Crops Res Bull 69:105–114

    Article  Google Scholar 

  • Temme N, Tudzynski P (2009) Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterisation of Botrytis activator protein 1. Mol Plant Microb Interact 22:987–998

    Article  CAS  Google Scholar 

  • Thapa CD, Jandaik CL (1989) Changes in polyphenoloxidase and peroxidase activity due to infection of Verticillium fungicola in fruit bodies of Agaricus bisporus. Mushroom Sci 12:765–769

    Google Scholar 

  • Tsukamoto T, Murata H, Shirata A (2002) Identification of non-pseudomonad bacteria from fruit bodies of wild Agaricales fungi that detoxify tolaasin producd by Pseudomonas tolaasii. Biosci Biotechnol Biochem 66:2201–2208

    Article  CAS  Google Scholar 

  • Védie R, Rousseau T (2008) Serenade biofongicide: une innovation majeure dans les champignonnières françaises pour lutter contre Trichoderma aggressivum, agent de la moisissure verte du compost. La Lettre du CTC 21:1–2

    Google Scholar 

  • Williams J, Clarkson JM, Mills PR, Cooper RM (2003) Saprophytic and mycoparasitic components of aggressiveness of Trichoderma harzianum groups toward the commercial mushroom Agaricus bisporus. Appl Environ Microbiol 69:4192–4199

    Article  CAS  Google Scholar 

  • Wong WC, Preece TF (1979) Identification of Pseudomonas tolaasii: the white line in agar and mushroom tissue block rapid pitting tests. J Appl Bacteriol 47:401–407

    Google Scholar 

  • Zare R, Gams W (2008) A revision of the Verticillium fungicola species complex and its affinity with the genus Lecanicillium. Mycol Res 112:811–824

    Article  CAS  Google Scholar 

  • Zhao Ming, Zhou JinYan, Li ZhiDong, Song WeiWei, Tan YouJiu, Tan Hong (2009) Boty-II, a novel LTR retrotransposon in Botrytis cinerea B05.10 revealed by genomic sequence. E J B 12:5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michèle L. Largeteau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Largeteau, M.L., Savoie, JM. Microbially induced diseases of Agaricus bisporus: biochemical mechanisms and impact on commercial mushroom production. Appl Microbiol Biotechnol 86, 63–73 (2010). https://doi.org/10.1007/s00253-010-2445-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2445-2

Keywords

Navigation