Skip to main content
Log in

Use of sustainable chemistry to produce an acyl amino acid surfactant

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Surfactants find wide commercial use as foaming agents, emulsifiers, and dispersants. Currently, surfactants are produced from petroleum, or from seed oils such as palm or coconut oil. Due to concerns with CO2 emissions and the need to protect rainforests, there is a growing necessity to manufacture these chemicals using sustainable resources In this report, we describe the engineering of a native nonribosomal peptide synthetase pathway (i.e., surfactin synthetase), to generate a Bacillus strain that synthesizes a highly water-soluble acyl amino acid surfactant, rather than the water insoluble lipopeptide surfactin. This novel product has a lower CMC and higher water solubility than myristoyl glutamate, a commercial surfactant. This surfactant is produced by fermentation of cellulosic carbohydrate as feedstock. This method of surfactant production provides an approach to sustainable manufacturing of new surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acmite Market Intelligence (2008) World surfactant market: markets, products, applications, innovations, chances & risks, competition, prospects to 2015. Ratingen, Germany

    Google Scholar 

  • Amidon T, Liu S (2009) Water-based woody biorefinery. Biotech Adv 27:542–550

    Article  CAS  Google Scholar 

  • Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746

    CAS  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophy Res 31:488–494

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can Biochem Physiol 37(8):911–917

    CAS  Google Scholar 

  • Cooper D, Macdonald C, Duff J, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microb 42:408–412

    CAS  Google Scholar 

  • Danielson F, Beukema H, Burgess N, Parish F, Bruhl C, Donald P et al (2009) Biofuel plantations on forested lands: double jeopardy for diversity and climate. Conserv Biol 23:348–358

    Article  Google Scholar 

  • Donahue WF, Turczyk BM, Jarrell KA (2002) Rapid gene cloning using terminator primers and modular vectors. Nucleic Acids Res 30:e95

    Article  Google Scholar 

  • Fabret C, Ehrlich S, Noirot P (2002) A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 46:25–36

    Article  CAS  Google Scholar 

  • Fitzherbert E, Struebig M, Morel A, Danielsen F, Ca B, Donald P et al (2008) How will palm oil expansion affect biodiversity? Trends Ecol Evol 23:538–545

    Article  Google Scholar 

  • Hamoen L, Eshuis H, Jongbloed J, Venema G, van Sinderen D (1995) A small gene, designated comS, located within the coding region of the fourth amino acid-activating domain of srfA, is required for competence development in Bacillus subtilis. Mol Microbiol 15(1):55–63

    Article  CAS  Google Scholar 

  • Husmann M, Menting K, Rieckert H, Ring H, Wiesse J, Zinser W (2004) Secondary fatty acid amide derivatives: amino-acid based surfactants for household, industrial and personal care applications. SÖFW Journal 130:22–28

    Google Scholar 

  • Infante M, Pérez L, Pinazo A, Clapés P, Morán M-C (2003) Amino acid-based surfactants. In: Holmberg K (ed) Novel surfactants: preparation applications and biodegradability (Surfactant Science series Vol. 114. Marcel Dekker, New York, NY, pp 193–216

    Google Scholar 

  • Kakinuma A, Sugino H, Isono M, Tamura G, Arima K (1969) Determination of fatty acid in surfactin and elucidation of the total structure of surfactin. Agric Biol Chem 33:973–976

    CAS  Google Scholar 

  • Kleinkauf H, Von Döhren H (1996) A nonribosomal system of peptide biosynthesis. Eur J Biochem 236:335–351

    Article  CAS  Google Scholar 

  • Levison MI (2009) Surfactant production:present realities and future perspectives. In: Zoller U (ed) Handbook of detergents part F: production, vol 142. CRC, Boca Raton, FL, pp 1–38

    Google Scholar 

  • Mielenz J, Bardsley J, Wyman CE (2009) Fermentation of soyhulls to ethanol while preserving protein value. Bioresource Technol 100:3532–3539

    Article  CAS  Google Scholar 

  • Mukherjee S, Das P, Sen R (2006) Toward commercial production of microbial surfactants. Trends Biotechnol 24:509–515

    Article  CAS  Google Scholar 

  • Nnanna I, Cheng G, Xia J (2001) Potential applications of protein-based surfactants. In: Nnanna I, Xia J (eds) Protein-based surfactants; synthesis: physicochemical properties, and applications (surfactant science series), vol 101, pp. Marcel Dekker, New York, NY, pp 227–260

    Google Scholar 

  • Noah KS, Fox SL, Bruhn DF, Thompson DN, Bala GA (2002) Development of continuous surfactin production from potato process effluent by Bacillus subtilis in an airlift reactor. Appl Biochem Biotech 98–100:803–813

    Article  Google Scholar 

  • Patel M (2004) Surfactants based on renewable raw materials: carbon dioxide reduction potential and policies and measures for the European Union. J Ind Ecol 7(3–4):47–62

    Google Scholar 

  • Patel MK, Theiss A, Worrell E (1999) Surfactant production and use in Germany: resource requirements and CO2 emissions. Resour Conserv Recy 25:61–78

    Article  Google Scholar 

  • Perlack R (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. USDA/DOE, Oak Ridge, TN

    Google Scholar 

  • Peypoux F, Bonmatin J, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotech 51:553–563

    Article  CAS  Google Scholar 

  • Roncero M (1983) Genes controlling xylan utilization by Bacillus subtilis. J Bacteriol 156:257–263

    CAS  Google Scholar 

  • Rosen M (1989) Surfactants and interfacial phenomena. Wiley, New Jersey

    Google Scholar 

  • Rust D (2008) Surfactants: a market opportunity study update. OmniTech International Ltd., Midland, MI

  • Sakamoto K (2001) Current market developments and trends in amino acid-and protein-based surfactants. In: Nnanna I, Xia J (eds) Protein-based surfactants: synthesis, physiochemical properties and applications (Surfactant Science Series), vol 101. Marcel Dekker, New York, NY, pp 261–281

    Google Scholar 

  • Stachelhaus T, Marahiel M (1995) Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett 125:3–14

    Article  CAS  Google Scholar 

  • Stevens B, Joska T, Anderson A (2006) Progress toward re-engineering non-ribosomal peptide synthetase proteins; a potential new source of pharmacological agents. Drug Devel Res 66:9–18

    Article  Google Scholar 

  • Trieu-Cuot P, Courvalin P (1983) Nucleotide sequence of the streptococcus fraecalis plasmid gene encoding the 3′5′-aminoglycoside phosphotrasferase type III. Gene 23:331–341

    Article  CAS  Google Scholar 

  • Van Bogaert I, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme E (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotech 76:23–34

    Article  Google Scholar 

  • Vater J (1986) Lipopeptides, an attractive class of microbial surfactants. Progr Colloid & Polymer Sci 72:12–18

    Article  CAS  Google Scholar 

  • Wei Y, Chu I (2002) Mn2+ improves surfactin production by Bacillus subtilis. Biotechnol Lett 24:479–482

    Article  CAS  Google Scholar 

  • Wolf M, Geczi A, Simon O, Rainer B (1995) Genes encoding xylan and -glucan hydrolyzing enzymes in Bacillus subtilis: characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase. Microbiology 141:281–290

    Article  CAS  Google Scholar 

  • Zhang Y (2008) Reviving the carbohydrate economy via multi-product lignocelluloses biorefineries. J Ind Microbiol Biotech 35:367–375

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Jarrell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reznik, G.O., Vishwanath, P., Pynn, M.A. et al. Use of sustainable chemistry to produce an acyl amino acid surfactant. Appl Microbiol Biotechnol 86, 1387–1397 (2010). https://doi.org/10.1007/s00253-009-2431-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2431-8

Keywords

Navigation