Skip to main content
Log in

A novel xyloglucan-specific endo-β-1,4-glucanase: biochemical properties and inhibition studies

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel xyloglucan-specific endo-β-1,4-glucanase gene (xeg5A) was isolated, cloned, and expressed in Esherichia coli. The enzyme XEG5A consisted of a C-terminal catalytic domain and N-terminal sequence of ~90 amino acid residues with unknown function. The catalytic domain assumed an (α/β)8-fold typical of glycoside hydrolase (GH) family 5, with the two catalytic residues Glu240 and Glu362 located on opposite sides of the surface groove of the molecule. The recombinant enzyme showed high specificity towards tamarind xyloglucan and decreasing activity towards xyloglucan oligosaccharide (HDP-XGO), carboxymethyl cellulose, and lichenan. Tamarind xyloglucan was hydrolyzed to three major fragments, XXXG, XXLG/XLXG, and XLLG. The hydrolysis followed the Michaelis–Menten kinetics, yielding K m and V max of 3.61 ± 0.23 mg/ml and 0.30 ± 0.01 mg/ml/min, respectively. However, the hydrolysis of HDP-XGO showed a decrease in the rate at high concentrations suggesting appearance of excess substrate inhibition. The addition of XXXG resulted in linear noncompetitive inhibition on the hydrolysis of tamarind xyloglucan giving a K i of 1.46 ± 0.13 mM. The enzyme was devoid of transglycosylase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  • Baumann MJ, Eklof JM, Michel G, Kallas AM, Terri TT, Czjzek M, Brumer H III (2007) Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: Biological implications for cell wall metabolism. Plant Cell 19:1947–1963

    Article  CAS  Google Scholar 

  • Brumer H, Zhou Q, Baumann MJ, Carlsson K, Teeri TT (2004) Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucan. J Am Chem Soc 126:5715–5721

    Article  CAS  Google Scholar 

  • Bukhtojarov FE, Ustinov BB, Salanovich TN, Antonov AI, Gusakov AV, Okunev ON, Sinitsyn AP (2004) Cellulase complex of the fungus Chrysosporium lucknowense: isolation and characterization of endoglucanases and cellobiohydrolases. Biochemistry (Moscow) 69:542–551

    Article  CAS  Google Scholar 

  • Carmody WR (1961) An easily prepared wide range buffer series. J Chem Educ 38:559–560

    Article  CAS  Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476

    Article  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  CAS  Google Scholar 

  • Desmet T, Cantaert T, Gualfetti P, Nerinckx W, Gross L, Mitchinson C, Piens K (2007) An investigation of the substrate specificity of the xyloglucanase Cel74A from Hypocrea jecorina. FEBS J 274:356–363

    Article  CAS  Google Scholar 

  • Ducros V, Czjzek M, Belaich A, Gaudin C, Fierobe H-P, Belaich J-P, Davies GJ, Haser R (1995) Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure 3:939–949

    Article  CAS  Google Scholar 

  • Edwards M, Dea ICM, Bulpin PV, Reid G (1986) Purification and properties of a novel xyloglucan-specific endo-(1⥵4)-β-D-glucanase from germinated Nasturtium seeds (Tropaeolum majus L.). J Biol Chem 261:9489–9494

    CAS  Google Scholar 

  • Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–2025

    Article  CAS  Google Scholar 

  • Eisenberg D, Luthy R (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  CAS  Google Scholar 

  • Fry SC (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828

    CAS  Google Scholar 

  • Fry SC (1997) Novel ‘dot-dot’ assays for glycosyltransferases and glycosylhydrolases: optimization for xyloglucan endotransglycosylase (XET) activity. Plant J 11:1141–1150

    Article  CAS  Google Scholar 

  • Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau J-P, Kato Y, Lorences EP, Maclachlan GA, McNeil M, Mort AJ, Reid JSG, Seitz HUl, Selvendran RR, Voragen AGJ, White AR (1993) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plantarum 89:1–3

    Article  CAS  Google Scholar 

  • Gloster TM, Ibatullin FM, Macauley K, Eklof JM, Roberts S, Turkenburg JP, Bjornvad ME, Jorgensen PL, Danielsen S, Johansen KS, Borchert TV, Wilson KS, Brumer H, Davies GJ (2007) Characterization and three-dimensional structures of two distinct bacterial xyloglucanases from families GH5 and GH12. J Biol Chem 282:19177–19189

    Article  CAS  Google Scholar 

  • Greffe L, Bessueille L, Bulone V, Brumer H (2005) Synthesis, preliminary characterization, and application of novel surfactants from highly branched xyloglucan oligosaccharides. Glycobiology 15:437–445

    Article  CAS  Google Scholar 

  • Grishutin SG, Gusakov AV, Markov AV, Ustinov BB, Semenova MV, Sinitsyn AP (2004) Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim Biophys Acta 1674:268–281

    CAS  Google Scholar 

  • Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410

    Article  CAS  Google Scholar 

  • Hayashi T, Marsden MPF, Delmer DP (1978) Pea xyloglucan and cellulose v. xyloglucan-cellulose interactions in vitro and in vivo. Plant Physiol 83:384–389

    Article  Google Scholar 

  • Hrmova M, Farkas V, Lahnstein J, Fincher GB (2007) A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1, 3:1, 4)-b-D-glucans. J Biol Chem 282:12951–12962

    Article  CAS  Google Scholar 

  • Ibatullin FM, Baumann MJ, Greffe L, Brumer H (2008) Kinetic analyses of retaining endo-(xylo)glucanases from plant and microbial sources using new chromogenic xylogluco-oligosaccharide aryl glycosides. Biochemistry 47:7762–7769

    Article  CAS  Google Scholar 

  • Johansson P, Brumer H III, Baumann MJ, Kallas AM, Henriksson H, Dennan SE, Teeri TT, Jones A (2004) Crystal Structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. Plant Cell 16:874–886

    Article  CAS  Google Scholar 

  • Kaiser PM (1980) Substrate inhibition as a problem of non-linear steady state kinetics with monomeric enzymes. J Mol Catal 8:431–442

    Article  CAS  Google Scholar 

  • Kato Y, Matsushita J, Kubodera T, Matsuda K (1985) A novel enzyme producing isoprimeverose from oligoxyloglucans of Aspergillus oryzae. J Biochem 97:801–810

    CAS  Google Scholar 

  • Knappert D, Grethlein H, Converse A (1980) Partial acid hydrolysis of cellulosic materials as a pretreatment for enzymatic hydrolysis. Biotechnol Bioeng 22:1449–1463

    Article  CAS  Google Scholar 

  • Koshland DE Jr (1959) Mechanisms of transfer enzymes. Enzymes 1:305–346

    CAS  Google Scholar 

  • Kosik O, Farkas V (2008) One-pot fluorescent labeling of xyloglucan oligosaccharides with suforhodamine. Anal Biochem 375:232–236

    Article  CAS  Google Scholar 

  • Lin Y, Lu P, Tang C, Mei Q, Sandig G, Rodrigues AD, Rushmore TH, Shou M (2004) Substrate inhibition kinetics for cytochrome P450-catalyzed reactions. Drug Metab Dispos 29:368–374

    Google Scholar 

  • Martinez-Fleites C, Guerreiro CIPD, Baumann MJ, Taylor EJ, Prates JAM, Ferreira LMA, Fontes CMGA, Brumer H, Davies GJ (2006) Crystal structures of Clostridium thermoecellum xyloglucanase, XGH74A, reveal the structural basis for xyloglucan recognition and degradation. J Biol Chem 281:24922–24933

    Article  CAS  Google Scholar 

  • McCarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Cur Opin Struct Biol 4:885–892

    Article  CAS  Google Scholar 

  • Melo F, Feytmans E (1998) Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277(5):1141–1152

    Article  CAS  Google Scholar 

  • Miyazaki S, Suishua F, Kawasaki N, Shirakawa M, Yamatoya K, Attwood D (1998) Thermally reversible xyloglucan gels as vehicles for rectal drug delivery. J Control Release 56:75–83

    Article  CAS  Google Scholar 

  • Moore PJ, Staehelin LA (1988) Immunogold localisation of the cell wall matrix polysaccharides rhamnogalacturonan-I and xyloglucan during cell expansion and cytokinesis in Trifolium pratense L.—implications for secretory pathways. Planta 174:433–445

    Article  CAS  Google Scholar 

  • NREL (2004) http://www.nrel.gov/biomass/proj_biochemical_conversion.html

  • Pages S, Kester HCM, Visser J, Benen JAE (2001) Changing a single amino acid residue switches processive and non-processive behavior of Aspergillus niger endopolygalacturonase I and II. J Biol Chem 276:33652–33656

    Article  CAS  Google Scholar 

  • Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20:629–639

    Article  CAS  Google Scholar 

  • Robyt JF, French D (1976) Multiple attack and polarity of action of porcine pancreatic α-amylase. Arch Biochem Biophys 138:662–670

    Article  Google Scholar 

  • Sinnott ML (1990) Catalytic mechanisms of enzymatic glycosyl transfer. Chem Rev 80:1171–1202

    Article  Google Scholar 

  • Sulova Z, Lednicka M, Farkas V (1995) A colorimetric assay for xyloglucan-endotransglycosylase from germinating seeds. Anal Biochem 229:80–85

    Article  CAS  Google Scholar 

  • Sulova Z, Takacova M, Steele NM, Fry SC, Farkas V (1998) Xyloglucan endotransglycosylase: evidence for the existence of a relatively stable glycosyl-enzyme intermediate. Biochem J 330:1475–1480

    CAS  Google Scholar 

  • Vincken J-P, Beldman G, Voragen AGJ (1997) Substrate specificity of endoglucanses; what determines xyloglucanase activity? Carbohydr Res 298:299–310

    Article  CAS  Google Scholar 

  • Wong DWS (2009) Applications of metagenomics for industrial bioproducts. In: Marco M (ed) Metagenomics: theory, methods, and applications. Horizon Scientific, London, pp 141–158

    Google Scholar 

  • Wong DWS, Batt SB, Lee CC, Wagschal K, Robertson GH (2005) Characterization of active Lentinula edodes glucoamylase expressed and secreted by Saccharomyces cerevisiae. Protein J 24:455–463

    Article  CAS  Google Scholar 

  • Wong DWS, Chan VJ, Batt SB (2008) Cloning and characterization of a novel exo-α-1, 5-L-arabinase gene and the enzyme. Appl Microbiol Biotechnol 79:941–949

    Article  CAS  Google Scholar 

  • Wong DWS, Chan VJ, McCormack AA (2009) Functional cloning and expression of a novel endo-α-1,5-L-arabinanase from a metagenomic library. Protein Peptide Lett 16:1435–1441

    Google Scholar 

  • Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–95

    Article  CAS  Google Scholar 

  • Yaoi K, Mitsuishi Y (2002) Purification, characterization, cloning, and expression of a novel xyloglucan-specific glycosidase, oligoxyloglucan reducing end-specific cellobiohydrolase. J Biol Chem 277:48276–48281

    Article  CAS  Google Scholar 

  • Yaoi K, Nakai T, Kameda Y, Hiyoshi A, Mitsuishi Y (2005) Cloning and characterization of two xyloglucanases from Paenibacillus sp. strain KM21. Appl Environ Microbiol 71:7670–7678

    Article  CAS  Google Scholar 

  • Yaoi K, Kondo H, Hiyoshi A, Noro N, Sugimoto H, Tsuda S, Mitsuishi Y, Miyazaki K (2007) The structural basis for the exo-mode of action in GH74 oligoxyloglucan reducing end-specific cellobiohydrolase. J Mol Biol 370:53–62

    Article  CAS  Google Scholar 

  • Zhou Q, Greffe L, Baumann MJ, Malmstrom E, Teeri TT, Brumer H III (2005) Use of xyloglucan as a molecular anchor for the elaboration of polymers from cellulose surfaces: a general route for the design of biocomposites. Macromolecules 38:3547–3549

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic D. W. S. Wong.

Additional information

Reference to a company and/or products is only for purposes of information and does not imply approval of recommendation of the product to the exclusion of others that may also be suitable. All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, age, marital status, or handicap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, D.D.W.S., Chan, V.J., McCormack, A.A. et al. A novel xyloglucan-specific endo-β-1,4-glucanase: biochemical properties and inhibition studies. Appl Microbiol Biotechnol 86, 1463–1471 (2010). https://doi.org/10.1007/s00253-009-2364-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2364-2

Keywords

Navigation