Skip to main content
Log in

Protein engineering: opportunities and challenges

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The extraordinary properties of natural proteins demonstrate that life-like protein engineering is both achievable and valuable. Rapid progress and impressive results have been made towards this goal using rational design and random techniques or a combination of both. However, we still do not have a general theory on how to specify a structure that is suited to a target function nor can we specify a sequence that folds to a target structure. There is also overreliance on the Darwinian blind search to obtain practical results. In the long run, random methods cannot replace insight in constructing life-like proteins. For the near future, however, in enzyme development, we need to rely on a combination of both.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aharoni A, Gaidukov L, Khersonsky O, McQ Gould S, Roodveldt C, Tawfik DS (2005) The ‘evolvability’ of promiscuous protein functions. Nat Genet 37:73–76

    CAS  PubMed  Google Scholar 

  • Alexander PA, Rozak DA, Orban J, Bryan PN (2005) Directed evolution of highly homologous proteins with different folds by phage display: implications for the protein folding code. Biochemistry 44:14045–14054

    CAS  PubMed  Google Scholar 

  • Arnold (2007) Directed enzyme evolution http://www.che.caltech.edu/groups/fha/directed_evolution.html

  • Axe D (2004) Estimating the prevalence of protein sequences adopting functional enzyme folds. J Mol Biol 341:1295–1315

    CAS  PubMed  Google Scholar 

  • Behe MJ, Snoke DW (2004) Simulating evolution by gene duplication of protein features that require multiple amino acid residues. Protein Science 13:2651–2664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bittker JA, Le BV, Liu JM, Liu DR (2004) Directed evolution of protein enzymes using nonhomologous random recombination. Proc Natl Acad Sci USA 101:7011–7016

    CAS  PubMed  Google Scholar 

  • Blanco FJ, Angrand I, Serrano L (1999) Exploring the conformational properties of the sequence space between two proteins with different folds: an experimental study. J Mol Biol 285:741–753

    CAS  PubMed  Google Scholar 

  • Bloom JD, Labthavikul ST, Otey CR, Arnold FA (2006) Protein stability promotes evolvability. Proc Natl Acad Sci USA 103:5869–5874

    CAS  PubMed  Google Scholar 

  • Bogarad LD, Deem MW (1999) A hierarchical approach to protein molecular evolution. Proc Natl Acad Sci USA 96:2591–2595

    CAS  PubMed  Google Scholar 

  • Bolon DN, Mayo SL (2001) Enzyme-like proteins by computational design. Proc Natl Acad Sci USA 98:14274–14279

    CAS  PubMed  Google Scholar 

  • Bolon DN, Voigt CA, Mayo SL (2002) De novo design of biocatalysts. Curr Opin Chem Biol 6:125–129

    CAS  PubMed  Google Scholar 

  • Bommarius AS, Broering JM, Chaparro-Riggers JF, Polizzi KM (2006) High-throughput screening for enhanced protein stability. Curr Opin Biotechnol 17:606–610

    CAS  PubMed  Google Scholar 

  • Bornscheuer UT, Kazlauskas RJ (2004) Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways. Angew Chem Int Ed 43:6032–6040

    CAS  Google Scholar 

  • Butterfoss GL, Kuhlman B (2006) Computer-based design of novel protein structures. Ann Rev Biophys Biomol Struct 35:49–65

    CAS  Google Scholar 

  • Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH, Bertain S, Cho HJ, Duck N, Wong J, Liu D, Lassner MW (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304:1151–1154

    CAS  PubMed  Google Scholar 

  • Chen K, Arnold FH (1993) Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of Subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci USA 90:5618–5622

    CAS  PubMed  Google Scholar 

  • Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443

    CAS  PubMed  Google Scholar 

  • Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cordes MHJ, Burton RE, Walsh NP, McKnight CJ, Sauer RT (2000) An evolutionary bridge to a new protein fold. Nature Struct Biol 7(12):1129–1132

    CAS  PubMed  Google Scholar 

  • Corey MJ, Corey E (1996) On the failure of de novo-designed peptides as biocatalysts. Proc Natl Acad Sci USA 93:11428–11434

    CAS  PubMed  Google Scholar 

  • Daggett V, Levitt M (1993) Protein unfolding pathways explored through molecular dynamics simulations. J Mol Biol 232:600–619

    CAS  PubMed  Google Scholar 

  • Doi N, Kakukawa K, Oishi Y, Yanagawa H (2005) High solubility of random-sequence proteins consisting of five kinds of primitive amino acids. Prot Eng Des Sel 18:279–284

    CAS  Google Scholar 

  • Dwyer MA, Looger LL, Hellinga HW (2004) Computational design of a biologically active enzyme. Science 304:1967–1971

    CAS  PubMed  Google Scholar 

  • Eijsink VGH, Gåseidnes S, Synstad B, Bjørk A, Sirevåg R, Van den Burg B, Vriend G (2004) Rational engineering of enzyme stability. J Biotechnol 113:105–120

    CAS  PubMed  Google Scholar 

  • Fenel F, Leisola M, Jänis J, Turunen O (2004) A de novo designed N-terminal disulfide bridge stabilizes the Trichoderma reesei endo-1, 4-b-xylanase II. J Biotechnol 108:137–143

    CAS  PubMed  Google Scholar 

  • Flores H, Ellington AD (2005) A modified consensus approach to mutagenesis inverts the cofactor specificity of Bacillus stearothermophilus lactate dehydrogenase. Prot Eng Des Sel 18:369–377

    CAS  Google Scholar 

  • Fox SW (1980) Metabolic microspheres. Origins and evolution. Naturwissenschaften 67:378–383

    CAS  PubMed  Google Scholar 

  • Gould SM, Tawfik DS (2005) Directed evolution of the promiscuous esterase activity of carbonic anhydrase II. Biochem 44:5444–5452

    CAS  Google Scholar 

  • Hakulinen N, Turunen O, Jänis J, Leisola M, Rouvinen J (2003) Three-dimensional structures of thermophilic β-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Eur J Biochem 270:1399–1412

    CAS  PubMed  Google Scholar 

  • Hayes RJ, Bentzien J, Ary ML, Hwang MY, Jacinto JM, Vielmetter J, KUndu A, Dahiyat BI (2002) Combining computational and experimental screening for rapid optimization of protein properties. Proc Natl Acad Sci USA 99:15926–15931

    CAS  PubMed  Google Scholar 

  • Hecht MH, Das A, Go A, Bradley LH, Wei Y (2004) De novo proteins from designed combinatorial libraries. Protein Sci 13:1711–1723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hibbert EG, Dalby PA (2005) Directed evolution strategies for improved enzymatic performance. Microbial Cell Fact 4:29

    Google Scholar 

  • Johannes TW, Zhao H (2006) Directed evolution of enzymes and biosynthetic pathways. Curr Opin Microbiol 9:261–267

    CAS  PubMed  Google Scholar 

  • Kaplan J, DeGrado WF (2004) De novo design of catalytic proteins. Proc Natl Acad Sci USA 101:11566–11570

    CAS  PubMed  Google Scholar 

  • Karimäki J, Parkkinen T, Santa H, Pastinen O, Leisola M, Rouvinen J, Turunen O (2004) Crystallographic, molecular dynamics simulation and site-directed mutagenesis study of the reaction of d-xylose isomerase with l-arabinose. Prot Eng Des Select 17:861–869

    Google Scholar 

  • Keefe AD, Szostak JW (2001) Functional proteins from a random-sequence library. Nature 410:715–718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khersonsky O, Roodveldt C, Tawfik DS (2006) Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol 10:498–508

    CAS  PubMed  Google Scholar 

  • Kondrashov FA, Kondrashov AS (2006) Role of selection in fixation of gene duplications. J Theor Biol 239:141–151

    CAS  PubMed  Google Scholar 

  • Kuhlman B, Dantas G, Ireton, GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364–1368

    CAS  PubMed  Google Scholar 

  • Lehmann M, Wyss M (2001) Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. Curr Opin Biotechnol 12:371–375

    CAS  PubMed  Google Scholar 

  • Lehmann M, Loch C, Middendorf A, Studer D, Lassen SF, Pasamontes L, van Loon A, Wyss M (2002) The consensus concept for thermostability engineering of proteins: further proof of concept. Prot Eng 15:403–411

    CAS  Google Scholar 

  • Lo Surdo P, Walsh MA, Sollazo M (2004) A novel ADP- and zinc-binding fold from function-directed in vitro evolution. Nat Struct Mol Biol 11:382–383

    PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    CAS  PubMed  Google Scholar 

  • McLachlan AD (1987) Gene duplication and the origin of repetitive protein structures. In: Cold Spring Harbor symposium on quantitative biology, vol. LII. Cold Spring Harbor laboratory, Cold Spring Harbor, p. 411–420

    Google Scholar 

  • Meier S, Jensen PR, David CN, Chapman J, Holstein TW, Grzesiek S, Ozbek S (2007) Continuous molecular evolution of protein-domain structures by single amino acid changes. Curr Biol 17:173–178

    CAS  PubMed  Google Scholar 

  • Morley KL, Kazlauskas RJ (2005) Improving enzyme properties: when are closer mutations better? Trends Biotechnol 23:231–237

    CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ohta T (2002) Near-neutrality in evolution of genes and gene regulation. Proc Natl Acad Sci USA 99:16134–16137

    CAS  PubMed  Google Scholar 

  • Orencia MC, Yoon JS, Ness JE, Stemmer WPC, Stevens RC (2001) Predicting the emergence of antibiotic resistance by directed evolution and structural analysis. Nature Struct Biol 8:238–242

    CAS  PubMed  Google Scholar 

  • Palackal N, Brennan Y, Callen WN, Dupree P, Frey G, Goubet F, Hazlewood GP, Healey S, Kang YE, Kretz KA, Lee E, Tan X, Tomlinson GL, Verruto J, Wong VW, Mathur EJ, Short JM, Robertson DE, Steer BA (2004) An evolutionary route to xylanase process fitness. Protein Sci 13:494–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park HS, Nam SH, Lee JK, Yoon CN, Mannervik B, Benkovic SJ, Kim HS (2006) Design and evolution of new catalytic activity with an existing protein scaffold. Science 311:535–538

    CAS  PubMed  Google Scholar 

  • Pastinen O, Visuri K, Schoemaker H, Leisola M (1999) Novel reactions of xylose isomerase from Streptomyces rubiginosus. Enzyme Microb Technol 25:695–700

    CAS  Google Scholar 

  • Peisajovich SG, Rockah L, Tawfik DS (2006) Evolution of new protein topologies through multistep gene rearrangements. Nat Genet 38:168–174

    CAS  PubMed  Google Scholar 

  • Pikkemaat MG, Linssen ABM, Berendsen HJC, Janssen DB (2002) Molecular dynamics simulations as a tool for improving protein stability. Prot Eng 15:185–192

    CAS  Google Scholar 

  • Pleiss J (2006) The promise of synthetic biology. Appl Microbiol Biotechnol 73:735–739

    CAS  PubMed  Google Scholar 

  • Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ (2007) Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445:383–386

    CAS  PubMed  Google Scholar 

  • Riechmann L, Winter G (2000) Novel folded protein domains generated by combinatorial shuffling of polypeptide segments. Proc Natl Acad Sci USA 97:10068–10073

    CAS  PubMed  Google Scholar 

  • Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci USA 94:12297–12302

    CAS  PubMed  Google Scholar 

  • Rubin-Pitel SB, Zhao H (2006) Recent advances in biocatalysis by directed enzyme evolution. Comb Chem High Throughput Screen 9:247–257

    CAS  PubMed  Google Scholar 

  • Shiu SH, Byrnes JK, Pan R, Zhang P, Li WH (2006) Role of positive selection in the retention of duplicate genes in mammalian genomes. Proc Natl Acad Sci USA 103:2232–2236

    CAS  PubMed  Google Scholar 

  • Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391

    CAS  PubMed  Google Scholar 

  • Sterner R, Höcker B (2005) Catalytic versatility, stability, and evolution of the (β/α)8-barrel enzyme fold. Chem Rev 105:4038–4055

    CAS  PubMed  Google Scholar 

  • Taylor SV, Walter KU, Kast P, Hilvert D (2001) Searching sequence space for protein catalysts. Proc Natl Acad Sci USA 98:10596–10601

    CAS  PubMed  Google Scholar 

  • van Loo B, Spelberg JH, Kingma J, Sonke T, Wubbolts MG, Janssen DB (2004) Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling. Chem Biol 11:981–990

    PubMed  Google Scholar 

  • Voigt CA, Mayo SL, Arnold FH, Wang Z-G (2001) Computational method to reduce the search space for directed protein evolution. Proc Natl Acad Sci USA 98:3778–3783

    CAS  PubMed  Google Scholar 

  • Walter KU, Vamvaca K, Hilvert D (2005) An active enzyme constructed from a 9-amino acid alphabet. J Biol Chem 280:37742–37746

    CAS  PubMed  Google Scholar 

  • Wei Y, Liu T, Sazinsky SL, Moffet DA, Pelczer I, Hecht MH (2003) Stably folded de novo proteins from a designed combinatorial library. Protein Sci 12:92–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JC, Zeelen JP, Neubauer G, Vriend G, Backmann J, Michels PAM, Lambeir, A-M, Wierenga RK (1999) Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power. Prot Eng 12:243–250

    CAS  Google Scholar 

  • Wong TS, Zhurina D, Schwaneberg U (2006) The diversity challenge in directed protein evolution. Comb Chem High Throughput Screen 9:271–288

    CAS  PubMed  Google Scholar 

  • Yoshikuni Y, Ferrin TE, Keasling JD (2006) Designed divergent evolution of enzyme function. Nature 440:1078–1082

    CAS  PubMed  Google Scholar 

  • Xiong H, Fenel F, Leisola M, Turunen O (2004) Engineering the thermostability of Trichoderma reesei endo-1,4-β-xylanase II by combination of disulfide bridges. Extremophiles 8:393–400

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Douglas Axe for his helpful criticism and for revising the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Leisola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leisola, M., Turunen, O. Protein engineering: opportunities and challenges. Appl Microbiol Biotechnol 75, 1225–1232 (2007). https://doi.org/10.1007/s00253-007-0964-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0964-2

Keywords

Navigation