Skip to main content

Advertisement

Log in

Exploitation of Dunaliella for β-carotene production

  • Mini-review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Halotolerant microalga Dunaliella, which is exploited for the production of dried biomass or cell extract, is used as a medicinal food. With the advancement in this field in recent years, the production of bio-organic compounds such as β-carotene is established in many countries. Large-scale production of β-carotene is controlled by numerous stress factors like high light intensity, high salinity, temperature and availability of nutrients. The state-of-the-art strategies in industries in closed systems under new set of inductive factors will additionally promote the ease of commercial production of β-carotene. This review mainly focuses on the different methodologies employed recently for the optimum production of β-carotene from Dunaliella species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdullaev AA, Semenenko VE (1975) Intensive cultivation and certain physiological characteristics of Dunaliella salina Teod. Sov Plant Physiol 21:947–954

    Google Scholar 

  • Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226

    Google Scholar 

  • Avron M, Edelstein S, Ben-Amotz A (1987) Feed supplement. UK Patent Application Number 2189675A

  • Becker W (2004) Microalgae for aquaculture. The nutritional value of microalgae for aquaculture. In: Richmond A (ed) Handbook of microalgal culture, Blackwell, Oxford pp 380–391

    Google Scholar 

  • Ben-Amotz A (1996) Effect of low temperature on the stereoisomer composition of β-carotene in the halotolerant alga, Dunaliella bardawil (Chlorophyta). J Phycol 32:272–275

    CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1983) On the factors which determine the massive β-carotene accumulation in the halotolerant alga Dunaliellabardawil. Plant Physiol 72:593–597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant algae Dunaliella for industrial products. Trends Biotechnol 8:121–126

    CAS  Google Scholar 

  • Ben-Amotz A, Fishler R (1998) Analysis of carotenoids with emphasis on 9-cis-β-carotene in vegetables and fruits commonly consumed in Israel. Food Chem 62:515–520

    CAS  Google Scholar 

  • Ben-Amotz A, Gressel J, Avron M (1987) Massive Accumulation of phytoene induced by norflurazon in Dunaliella bardawil (Chlorophyceae) prevents recovery from photoinhibition. J Phycol 23:176–181

    CAS  Google Scholar 

  • Ben-Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene rich globules from Dunaliellabardawil (Chlorophyceae). J Phycol 18:529–537

    CAS  Google Scholar 

  • Ben-Amotz A, Shaish A, Avron M (1989) Mode of action of the massively accumulated β-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiol 91:1040–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berset C (1990) The research situation with regard to natural food colourants. Ind Aliment Agric 107:1163–1166

    CAS  Google Scholar 

  • Bertram JS, Bortkiewicz H (1995) Dietary carotenoids in habit neoplastic transformation and modulate gene expression in mouse and tumor cells. Am J Clin Nutr 62:13275–13365

    Google Scholar 

  • Berube KA, Dodge JD, Ford TW (1990) Effects of chronic salt stress on the ultra structure of D. bioculata (Chlorophyta, Volvocales): mechanisms of response and recovery. Eur J Phycol 34:117–123

    Google Scholar 

  • Bhosale P, Gadre RV (2001) Optimization of carotenoid production from hyper-producing Rhodotorula glutinis mutant 32 by a factorial approach. Lett Appl Microbiol 33:12–16

    CAS  PubMed  Google Scholar 

  • Borowitzka LJ (1992) Commercial Dunaliella production: history of development. In: Villa TG, Abalde J (eds) Profiles on biotechnology: servicio de publicaciones, Universidad Santiago de Compostela, A Coruna pp 235–245

  • Borowitzka MA (1998) Company news. J Appl Phycol 10:417

    Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988) Dunaliella. In: Borowitzka MA, Borowitzka LJ (eds) Microalgal biotechnology, Cambridge University Press, New York, p 477

    Google Scholar 

  • Borowitzka MA, Borowitzka LJ, Moulton TP (1984) The mass culture of Dunaliellasalina for fine chemicals: from laboratory to pilot plant. Hydrobiologia 116/117:115–134

    Google Scholar 

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331

    CAS  Google Scholar 

  • Castenmiller JJ, West CE (1998) Bioavailability and bioconversion of carotenoids. Ann Rev Nutr 18:19–38

    CAS  Google Scholar 

  • Chaumont D (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5:593–604

    Google Scholar 

  • Chitlaru E, Pick U (1991) Regulation of glycerol synthesis in response to osmotic changes in Dunaliella. Plant Physiol 96:50–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan KA, Rose PD (1991) Abscisic acid metabolism in salt stressed cells of Dunaliella salina. Plant Physiol 97:798–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curtain CC, Looney FD, Regan Dl, Ivancic NM (1983) Changes in the ordering of lipids in the membrane of Dunaliella in response to osmotic-pressure changes. Biochem J 213:131–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrenfeld J, Cousin JL (1984) Ionic regulation of the unicellular green alga, Dunaliella teritolecta: response to hypertonic shock. J Mem Bio 77:45–55

    CAS  Google Scholar 

  • Faure H, Fayol V, Galabert C, Grolier P, Moel GL, Steghens J, Kappel AV, Nabet F (1999) Carotenoids: 1. Metabolism and physiology. Ann Biol Clin (Paris) 57:169–183

    CAS  Google Scholar 

  • Fujii S, Takenishi M, Mantani S, Takada H (1983) The growth of Dunaliella under magnesium hypertonicity. Jap J Phycol 31:81–85

    CAS  Google Scholar 

  • Garcia-Gonzalez M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photo bioreactor. J Biotech 115:81–90

    CAS  Google Scholar 

  • Garcia-Malea Lopez MC, Sanchez EDR, Lopez JLC, Fernandez FGA, Sevilla JMF, Rivas J, Guerrero MG, Grima EM (2006) Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photo bioreactors. J Biotech 123:329–342

    CAS  Google Scholar 

  • Geider RJ, Hugh L, Macintyre Lisa MG, Mckay ML (1998) Responses of the photosynthetic apparatus of Dunaliellatertiolecta (Chlorophyceae) to nitrogen and phosphorous limitation. Eur J Phycol 33:315–332

    Google Scholar 

  • Gomez PI, Gonzalez MA (2004) Genetic variation among seven strains of Dunaliellasalina (Chlorophyta) with industrial potential, based on RAPD banding patterns and on nuclear ITS rDNA sequences. Aquaculture 233:149–162

    Google Scholar 

  • Gomez PI, Gonzalez MA (2005) The effect of temperature and irradiances on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions. Biol Res 38:151–162

    CAS  PubMed  Google Scholar 

  • Hansen LA, Sigman CC, Andreola F, Ross SA, Kelloff GJ, De Luca LM (2000) Retinoids in chemoprevention and differentiation therapy. Carcinogenesis 21:1271–1279

    CAS  PubMed  Google Scholar 

  • Hazuka MB, Edwards-Prasad J, Newman F, Kinzie JJ, Prasad KN (1990) β-carotene induces morphological differentiation and decreases adenylate cyclase activity in melanoma cells in culture. J Am Coll Nutr 9:143–149

    CAS  PubMed  Google Scholar 

  • Hejazi MA, Holwerda E, Wiffels RH (2004) Milking microalga Dunaliella salina for β-carotene production in two-phase bioreactors. Biotechnol Bioeng 85:475–481

    CAS  PubMed  Google Scholar 

  • Herrmann H, Hader DP, Ghetti F (1997) Inhibition of photosynthesis by solar radiation in Dunaliella salina: relative efficiencies of UV-B, UV-A and PAR. Plant Cell Environ 20:359–365

    CAS  Google Scholar 

  • Iwamoto H (2004) Industrial production of microalgal cell mass and secondary products—major industrial species. In: Richmond A (ed) Handbook of microalgal culture. Blackwell, Oxford, pp 270–281

    Google Scholar 

  • Jahnke LS (1999) Massive carotenoid accumulation in Dunaliella bardawil induced by ultraviolet-A radiation. J Photochem Photobiol B: Biol 48:68–74

    CAS  Google Scholar 

  • Johnson E, Krinsky N, Russell R (1996) Serum response of all-trans and 9-cis isomers of β-carotene in humans. J Am Coll Nutr 15:620–624

    CAS  PubMed  Google Scholar 

  • Karni L, Avron M (1988) Ion content of the halotolerant alga, Dunaliella salina. Plant Cell Physiol 29:1131–1314

    Google Scholar 

  • Katz A, Jimenez C, Pick U (1995) Isolation and characterization of a protein associated with carotene globules in the alga, Dunaliella bardawil. Plant Physiol 108:1657–1664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katz A, Pick U (2001) Plasma membrane electron transport coupled to Na+ extrusion in the halotolerant alga, Dunaliella. Biochim Biophys Acta 1504:423–431

    CAS  PubMed  Google Scholar 

  • Kazi N, Radvany R, Oldham T, Keshavarzian A, Frommel TO, Libertin C, Mobarhan S (1997) Immunomodulatory effect of β-carotene on T lymphocyte subsets in patients with resected colonic polyps and cancer. Nutr Cancer 28:140–145

    CAS  PubMed  Google Scholar 

  • Kim SW, Kim JB, Jung WH, Kim JH, Jung JK (2006) Overproduction of β-carotene from metabolically engineered Escherichia coli. Biotechnol Lett 28:897–904

    CAS  PubMed  Google Scholar 

  • Krom MD, Brenner S (1991) Phosphorous limitation of primary productivity in the eastern Mediterranean sea. Limnol Oceanogr 37:424–432

    Google Scholar 

  • León R, Garbayo I, Hernández R, Vigara Vílchez C (2001) Organic solvent toxicity in photoautotrophic unicellular micro organisms. Enzyme Microb Technol 29:173–180

    Google Scholar 

  • León R, Martin M, Vigara J, Vilchez C, Vega JM (2003) Microalgae mediated photo production of β-carotene in aqueous–organic two phase systems. Biomol Eng 20:177–182

    PubMed  Google Scholar 

  • Lers A, Biener Y, Zamir A (1990) Photoinduction of massive β-carotene accumulation by the alga, Dunaliella bardawil. Plant Physiol 93: 389–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loeblich LA (1982) Photosynthesis and pigments influenced by light intensity and salinity in the halophyte, Dunaliella salina. J Mar Biol Assoc UK 62:493–508

    CAS  Google Scholar 

  • Massyuk NP (1965) Effect of Na, Mg, Cl and SO4 ions on growth, reproduction and carotene production in Dunaliella salina Teod. Ukr Bot Z 22:3–11

    Google Scholar 

  • Mathews-Roth MM (1987) Photoprotection by carotenoids. Fed Proc 46:1890–1893

    CAS  PubMed  Google Scholar 

  • Mc Murchie EJ, Raison JK (1979) Membrane lipid fluidity and its effect on the activation energy of membrane-associated enzymes. Biochim Biophys Acta 554:364–374

    CAS  PubMed  Google Scholar 

  • Metting FB (1996) Biodiversity and application of microalgae. J Ind Microbiol 17:477–489

    CAS  Google Scholar 

  • Milko ES (1962) Study of the requirements of two Dunaliella species in mineral and organic components of the medium. Moscow University, Vestnik. Biologia 6:21–23

    Google Scholar 

  • Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N (1998) Production of carotenoids lycopene, β-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 64:1226–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muto Y, Fuji J, Shidoji Y, Moriwaki H, Kawaguchi T, Noda T (1995) Growth retardation in human cervical dysplasia-derived cell lines by β-carotene through down-regulation of epidermal growth factor receptor. Am J Clin Nutr 62:1535S–1540S

    CAS  PubMed  Google Scholar 

  • Nagao A, Olson JA (1994) Enzymatic formation of 9-cis, 13-cis, and all-trans retinols from isomers of β-carotene. FASEB J 8:968–973

    CAS  PubMed  Google Scholar 

  • Ogbonna JC, Tanaka H (2000) Light requirement and photosynthetic cell cultivation: development of processes for efficient light utilization in photobioreactors. J Appl Phycol 12:207–218

    Google Scholar 

  • Omen GS, Goodman G, Thornquist M et al (1994) The β-carotene and retinol efficacy trial (CARET) for chemoprevention of lung cancer in high risk populations: smokers and asbestos exposed workers. Cancer Res 54:2038–2043

    Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotech 28:56–63

    CAS  Google Scholar 

  • Oren-Shamir M, Pick U, Avron M (1989) Involvement of the plasma membrane ATPase in the osmoregulatory mechanism of the alga, Dunaliella salina. Plant Physiol 89:1258–1263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orset S, Young AJ (2000) Exposure to low irradiances favours the synthesis of 9-cis-β, β-carotene in Dunaliella salina (Teod.). Plant Physiol 122:609–617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peto R, Doll R, Buckley JD, Sporn MB (1981) Can dietary β-carotene materially reduce human cancer rates? Nature 290:201–208

    CAS  PubMed  Google Scholar 

  • Poppel GV, Goldbohm RA (1995) Epidemiological evidences for β-carotene and cancer prevention. Am J Clin Nutr 62:1393S–1402S

    PubMed  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    CAS  PubMed  Google Scholar 

  • Radmer RJ (1996) Algal diversity and commercial algal products. Bioscience 46:263–270

    Google Scholar 

  • Raja R (2003) Studies on Dunaliella salina (Dunal) Teod. with special reference to its anticancer properties. Ph.D. Thesis, University of Madras, Chennai, India

  • Raja R, Anbazhagan C, Ganesan V, Rengasamy R (2004a) Efficacy of Dunaliella salina (Volvocales, Chlorophyta) in salt refinery effluent treatment. Asian J Chem 16:1081–1088

    CAS  Google Scholar 

  • Raja R, Anbazhagan C, Lakshmi D, Rengasamy R (2004b) Nutritional studies on Dunaliella salina (Volvocales, Chlorophyta) under laboratory conditions. Seaweed Res Util 26:127–146

    Google Scholar 

  • Raja R, Hemaiswarya S, Balasubramanyam D, Rengasamy R (2006a) PCR-identification of Dunaliella salina (Volvocales, Chlorophyta) and its growth characteristics. Microbiol Res (in press)

  • Raja R, Hemaiswarya S, Balasubramanyam B, Rengasamy R (2006b) Protective effect of Dunaliella salina (Volvocales, Chlorophyta) against experimentally induced fibrosarcoma on wistar rats. Microbiol Res (in press)

  • Rao RA, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560-564

    CAS  PubMed  Google Scholar 

  • Salguero A, León R, Mariotti A, De la Morena B, Vega JM, Vílchez C (2005) UV-A mediated induction of carotenoid accumulation in Dunaliella bardawil with retention of cell viability. Appl Microbiol Biotech 66:506–511

    CAS  Google Scholar 

  • Senger H, Wagner C, Hermsmeier D, Hohl N, Urbig T, Bishop NI (1993) The influence of light intensity and wavelength on the contents of α and β-carotene and their xanthophylls in green algae. J Photochem Photobiol Biol 18:273–279

    CAS  Google Scholar 

  • Shaish A, Avron M, Pick U, Ben-Amotz A (1993) Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? Planta 190:363–368

    CAS  Google Scholar 

  • Sies H, Stahl W (1997) Carotenoid and intracellular communications via gap junction, Int J Vitam Nutr Res 67:364–367

    CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    CAS  PubMed  Google Scholar 

  • Telfer A (2002) What is β-carotene doing in the photo system II reaction centre? Philos Trans R Soc Lond B Biol Sci 357:1431–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terao J (1989) Antioxidant activity of β-carotene-related carotenoid in solution. Lipids 24:659–661

    CAS  PubMed  Google Scholar 

  • Von Laar J, Stahl W, Bolsen K, Goerz G, Sies H (1996) β-carotene serum levels in patients with erythropoietic protoporphyria on treatment with the synthetic all-trans isomer or a natural isomeric mixture of β-carotene. J Photochem Photobiol B 33:157–162

    Google Scholar 

  • Vorst P, Baard RL, Mur LR, Korthals HJ, Van D (1994) Effect of growth arrest on carotene accumulation photosynthesis in Dunaliella. Microbiol 140:1411–1417

    CAS  Google Scholar 

  • Wang XD, Krinsky N, Benotti P (1994) Biosynthesis of 9-cis-retinoic acid from 9-cis-β-carotene in human intestinal mucosa in vitro. Arch Biochem Biophys 313:150–155

    CAS  PubMed  Google Scholar 

  • Williams A, Pryor BS, Wilhelm S, Cheryl L, Rock RD (2000) β-carotene from biochemistry to clinical trials. Nutr Rev 1:39–53

    Google Scholar 

Download references

Acknowledgment

The authors wish to express their sincere thanks to Prof. N. Anand, Director, Centre for Advanced Studies in Botany, University of Madras. Also, they extend their thanks to Dr. Velu Subramani, Senior Scientist, Research Triangle Institute, USA and Prof. R. Manivasakan, Indian Institute of Technology, Chennai for their critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Raja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raja, R., Hemaiswarya, S. & Rengasamy, R. Exploitation of Dunaliella for β-carotene production. Appl Microbiol Biotechnol 74, 517–523 (2007). https://doi.org/10.1007/s00253-006-0777-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0777-8

Keywords

Navigation