Skip to main content

Advertisement

Log in

Insights into pathophysiology of dystropy through the analysis of gene networks: an example of bronchial asthma and tuberculosis

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Co-existence of bronchial asthma (BA) and tuberculosis (TB) is extremely uncommon (dystropic). We assume that this is caused by the interplay between genes involved into specific pathophysiological pathways that arrest simultaneous manifestation of BA and TB. Identification of common and specific genes may be important to determine the molecular genetic mechanisms leading to rare co-occurrence of these diseases and may contribute to the identification of susceptibility genes for each of these dystropic diseases. To address the issue, we propose a new methodological strategy that is based on reconstruction of associative networks that represent molecular relationships between proteins/genes associated with BA and TB, thus facilitating a better understanding of the biological context of antagonistic relationships between the diseases. The results of our study revealed a number of proteins/genes important for the development of both BA and TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbulut S, Sogutcu N, Yagmur Y (2011) Coexistence of breast cancer and tuberculosis in axillary lymph nodes: a case report and literature review. Breast Cancer Res Treat 130(3):1037–1042

    Article  PubMed  Google Scholar 

  • Amer GA, El-Gazzar AG (2008) Circulating interleukin-18 and osteopontin in pulmonary tuberculosis patients and their correlation with disease activity. Egypt J Med Microbiol 17(3):405–410

    Google Scholar 

  • Arjomandi M, Galanter JM, Choudhry S et al (2011) Polymorphism in osteopontin gene (SPP1) is associated with asthma and related phenotypes in a Puerto Rican population. Pediatr Allergy Immunol Pulmonol 24(4):207–214

    Article  PubMed Central  PubMed  Google Scholar 

  • Awomoyi AA, Charurat M, Marchant A, Miller EN, Blackwell JM, McAdam KP et al (2005) Polymorphism in IL1B: IL1B-511 association with tuberculosis and decreased lipopolysaccharide-induced IL-1beta in IFN-gamma primed ex-vivo whole blood assay. J Endotoxin Res 11(5):281–286

    CAS  PubMed  Google Scholar 

  • Bader JS, Chaudhuri A, Rothberg JM, Chant J (2003) Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol 22(1):78–85

    Article  PubMed  Google Scholar 

  • Ben-Hur A, Noble WS (2005) Kernel methods for predicting protein–protein interactions. Bioinformatics 21(suppl 1):i38–i46

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 289–300

  • Cao S, Luo PF, Li W, Tang WQ, Cong XN, Wei PM (2012) Vitamin D receptor genetic polymorphisms and tuberculosis among Chinese Han ethnic group. Chin Med J (Engl) 125(5):920–925

    CAS  Google Scholar 

  • Catalá-López F, Suárez-Pinilla M, Suárez-Pinilla P (2014) Inverse and direct cancer comorbidity in people with central nervous system disorders: a meta-analysis of cancer incidence in 577,013 participants of 50 observational studies. Psychot Psychosom 83:89–105. doi:10.1159/000356498

    Article  Google Scholar 

  • Cernat T, Comanescu M, Alexandru D, Carlig V (2010) Simultaneous occurrence of other diseases among prison inmates with tuberculosis. Curr Health Sci J 36(3):143–146

    PubMed Central  PubMed  Google Scholar 

  • Cho YR, Shi L, Ramanathan M, Zhang A (2008) A probabilistic framework to predict protein function from interaction data integrated with semantic knowledge. BMC bioinforma 9(1):382. doi:10.1186/1471-2105-9-382

    Article  Google Scholar 

  • Christensen U, Haagerup A, Binderup HG, Vestbo J, Kruse TA, Børglum AD (2006) Family based association analysis of the IL2 and IL15 genes in allergic disorders. Eur J Hum Genet 14:227–235

    Article  CAS  PubMed  Google Scholar 

  • Demenkov P, Ivanisenko T, Kolchanov N, Ivanisenko V (2011) ANDVisio: a new tool for graphic visualization and analysis of literature mined associative gene networks in the ANDSystem. In silico biol 11:149–161. doi:10.3233/ISB-2012-0449

    CAS  PubMed  Google Scholar 

  • Dimmer E, Huntley R, Alam-Faruque Y et al (2012) The UniProt-GO Annotation database in 2011. Nucleic Acids Res 40:D565–D570. doi:10.1093/nar/gkr1048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Douni E, Kollias G (1998) A critical role of the p75 tumor necrosis factor receptor (p75TNF-R) in organ inflammation independent of TNF, lymphotoxin alpha, or the p55TNF-R. J Exp Med 188(7):1343–1352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feinstein AR (1970) Pre-therapeutic classification of co-morbidity in chronic disease. J Chron Dis 23(7):455–468

    Article  Google Scholar 

  • Fekih L, Boussoffara L, Jemaa M, Fenniche S, Hassene H, Belhabib D, Megdiche ML (2010) Tuberculosis in patients with asthma. Rev Mal Respir 27(7):679–684

    Article  CAS  PubMed  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815. doi:10.1093/nar/gks1094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human disease network. Proc Natl Acad Sci U S A 104(21):8685–8690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldberg DS, Roth FP (2003) Assessing experimentally derived interactions in a small world. Proc Natl Acad Sci 100(8):4372–4376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirota T, Suzuki Y, Hasegawa K et al (2005) Functional haplotypes of IL-12B are associated with childhood atopic asthma. J Allergy Clin Immunol 116(4):789–795

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann SC, Stanley EM, Darrin Cox E, Craighead N, DiMercurio BS, Koziol DE, Harlan DM, Kirk AD, Blair PJ (2001) Association of cytokine polymorphic inheritance and in vitro cytokine production in anti-CD3/CD28-stimulated peripheral blood lymphocytes. Transplantation 72:1444–1450

    Article  CAS  PubMed  Google Scholar 

  • Holloway JW, Yang IA, Holgate ST (2010) Genetics of allergic disease. J Allergy Clin Immunol 125(2 Suppl 2):S81–S94

    Article  PubMed  Google Scholar 

  • Ibáñez K, Boullosa C, Tabarés-Seisdedos R et al (2014) Molecular evidence for the inverse comorbidity between central nervous system disorders and cancers detected by transcriptomic meta-analyses. PLoS Genet 10:e1004173. doi:10.1371/journal.pgen.1004173

    Article  PubMed Central  PubMed  Google Scholar 

  • Jaccard P (1912) The distribution of the flora in the alpine zone. 1. New Phytol 11(2):37–50

    Article  Google Scholar 

  • Jain J, Valge-Archer VE, Rao A (1992) Analysis of the AP-1 sites in the IL-2 promoter. J Immunol 148:1240–1250

    CAS  PubMed  Google Scholar 

  • Kaneko Y, Yatagai Y, Yamada H, Iijima H, Masuko H, Sakamoto T, Hizawa N (2013) The search for common pathways underlying asthma and COPD. Int J Chron Obstruct Pulm Dis 8:65–78. doi:10.2147/COPD.S39617

    Google Scholar 

  • Kon OM, Sihra BS, Compton CH, Leonard TB, Kay AB, Barnes NC (1998) Randomised, dose-ranging, placebo-controlled study of chimeric antibody to CD4 (keliximab) in chronic severe asthma. Lancet 352(9134):1109–1113

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ampleford EJ, Howard TD, Moore WC, Torgerson DG, Li H, Busse WW, Castro M, Erzurum SC et al (2012) Genome-wide association studies of asthma indicate opposite immunopathogenesis direction from autoimmune diseases. J Allergy Clin Immunol 130(4):861–868. doi:10.1016/j.jaci.2012.04.041, e7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maalmi H, Sassi FH, Berraies A, Ammar J, Hamzaoui K, Hamzaoui A (2013) Association of vitamin D receptor gene polymorphisms with susceptibility to asthma in Tunisian children: a case control study. Hum Immunol 74(2):234–240

    Article  CAS  PubMed  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449

    Article  CAS  PubMed  Google Scholar 

  • Malde K, Coward E, Jonassen I (2003) Fast sequence clustering using a suffix array algorithm. Bioinformatics 19(10):1221–1226

    Article  CAS  PubMed  Google Scholar 

  • Medoff BD, Sauty A, Tager AM, Maclean JA, Smith RN, Mathew A et al (2002) IFN-gamma-inducible protein 10 (CXCL10) contributes to airway hyperreactivity and airway inflammation in a mouse model of asthma. J Immunol 168(10):5278–5286

    Article  CAS  PubMed  Google Scholar 

  • Paolini R, Poletti A, Ramazzina E, Menin C, Santacatterina M, Montagna M, Bonaldi L, Del Mistro A, Zamboni S, D’Andrea E (2000) Co-existence of cutaneous T-cell lymphoma and B hairy cell leukemia. Am J Hematol 64(3):197–202

    Article  CAS  PubMed  Google Scholar 

  • Park S, Yang J-S, Shin Y-E, Park J, Jang SK, Kim S (2011) Protein localization as a principal feature of the etiology and comorbidity of genetic diseases. Mol Syst Biol 7:494. doi:10.1038/msb.2011.29

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfaundler M, von Seht L (1921) Weiteres über Syntropie kindlicher Krankheitzustände. Z Kinderheilkd 30:298–313

    Google Scholar 

  • Puzyrev VP, Freidin MB (2009) Genetic view on the phenomenon of combined diseases in man. Acta Nat 1:52–57

    CAS  Google Scholar 

  • Puzyrev VP, Makeeva OA, Freidin MB (2010) Syntropy, genetic testing and personalized medicine. Per Med 7(4):399–405

    Article  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabásib AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555

    Article  CAS  PubMed  Google Scholar 

  • Rzhetsky A, Wajngurt D, Park N, Zheng T (2007) Probing genetic overlap among complex human phenotypes. Proc Natl Acad Sci U S A 104:11694–11699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saunders BM, Frank AA, Orme IM, Cooper AM (2002) CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cell Immunol 216(1–2):65–72

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj P, Alagarasu K, Harishankar M, Vidyarani M, Nisha Rajeswari D, Narayanan PR (2008) Cytokine gene polymorphisms and cytokine levels in pulmonary tuberculosis. Cytokine 43(1):26–33

    Article  CAS  PubMed  Google Scholar 

  • Shirtcliffe P, Weatherall M, Beasley R, International Study of Asthma and Allergies in Childhood (2002) An inverse correlation between estimated tuberculosis notification rates and asthma symptoms. Respirology 7(2):153–155

    Article  PubMed  Google Scholar 

  • Smoot M, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinforma (Oxford, Engl) 27:431–432

    Article  CAS  Google Scholar 

  • Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299(6710):1259–1260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Syed F, Blakemore SJ, Wallace DM, Trower MK, Johnson M, Markham AF et al (1999) CCR7 (EBI1) receptor down-regulation in asthma: differential gene expression in human CD4+ T lymphocytes. QJM 92(8):463–471

    Article  CAS  PubMed  Google Scholar 

  • Szalai C, Kozma GT, Nagy A, Bojszkó A, Krikovszky D, Szabó T, Falus A (2001) Polymorphism in the gene regulatory region of MCP-1 is associated with asthma susceptibility and severity. J Allergy Clin Immunol 108:375–381

    Article  CAS  PubMed  Google Scholar 

  • Thye T, Nejentsev S, Intemann CD, Browne EN, Chinbuah MA, Gyapong J, Osei I, Owusu-Dabo E, Zeitels LR, Herb F, Horstmann RD, Meyer CG (2009) MCP-1 promoter variant-362C associated with protection from pulmonary tuberculosis in Ghana, West Africa. Hum Mol Genet 18:381–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tso HW, Lau YL, Tam CM, Wong HS, Chiang AK (2004) Associations between IL12B polymorphisms and tuberculosis in the Hong Kong Chinese population. J Infect Dis 190(5):913–919

    Article  CAS  PubMed  Google Scholar 

  • Vermeirssen V, Barrasa MI, Hidalgo CA, Babon JA, Sequerra R, Doucette-Stamm L, Barabási AL, Walhout AJ (2007) Transcription factor modularity in a gene-centered C. elegans core neuronal protein–DNA interaction network. Genome Res 17(7):1061–1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • von Hertzen L, Klaukka T, Mattila H, Haahtela T (1999) Mycobacterium tuberculosis infection and the subsequent development of asthma and allergic conditions. J Allergy Clin Immunol 104(6):1211–1214

    Article  Google Scholar 

  • Wang JP, Rought SE, Corbeil J, Guiney DG (2003) Gene expression profiling detects patterns of human macrophage responses following Mycobacterium tuberculosis infection. FEMS Immunol Med Microbiol 39(2):163–172

    Article  PubMed  Google Scholar 

  • Wjst M, Lichtner P, Meitinger T, Grimbacher B (2009) STAT3 single-nucleotide polymorphisms and STAT3 mutations associated with hyper-IgE syndrome are not responsible for increased serum IgE serum levels in asthma families. Eur J Hum Genet 17(3):352–356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu YJ, Yang X, Wang XX, Qiu MT, You YZ, Zhang ZX, Zhu SM, Xu L, Tang FL (2013) Association of vitamin D receptor BsmI gene polymorphism with risk of tuberculosis: a meta-analysis of 15 studies. PLoS One 8(6):e66944. doi:10.1371/journal.pone.0066944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ (2008) A navigator for human genome epidemiology. Nat Genet 40(2):124–125

    Article  CAS  PubMed  Google Scholar 

  • Zeyrek D, Demir E, Alpman A, Ozkinay F, Gulen F, Tanac R (2008) Association of interleukin-1beta and interleukin-1 receptor antagonist gene polymorphisms in Turkish children with atopic asthma. Allergy Asthma Proc 29(5):468–474

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Park BH, Karpinets T, Samatova NF (2008) From pull-down data to protein interaction networks and complexes with biological relevance. Bioinformatics 24(7):979–986

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chen Y, Nie XB et al (2011) Interleukin-10 polymorphisms and tuberculosis susceptibility: a meta-analysis. Int J Tuberc Lung Dis 15(5):594–601. doi:10.5588/ijtld.09.0703

    Article  CAS  PubMed  Google Scholar 

  • Zheng XY, Guan WJ, Mao C et al (2013) Interleukin-10 promoter 1082/-819/-592 polymorphisms are associated with asthma susceptibility in Asians and atopic asthma: a meta-analysis. Lung. doi:10.1007/s00408-013-9519-8

    Google Scholar 

  • Zhernakova A, van Diemen CC, Wijmenga C (2009) Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat Rev Genet 10:43–55

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the President’s Grant for the Leading Scientific Schools of Russian Federation (5096.2014.4) and grant from the Federal Target Program Scientific and scientific-pedagogical personnel of innovative Russia for 2009–2013 years (contract number 8156) to E.Y.B., L.A.K., M.B.F., and V.P.P. and a project VI.61.1.2 and MES to E.S.T., P.S.D., V.A.I., and N.A.K.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Yu. Bragina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(XLSX 453 kb)

Table S2

(PDF 161 kb)

Table S3

(PDF 311 kb)

Table S4

(XLSX 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragina, E.Y., Tiys, E.S., Freidin, M.B. et al. Insights into pathophysiology of dystropy through the analysis of gene networks: an example of bronchial asthma and tuberculosis. Immunogenetics 66, 457–465 (2014). https://doi.org/10.1007/s00251-014-0786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-014-0786-1

Keywords

Navigation