Skip to main content
Log in

Immunoglobulin genes of the turtles

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The availability of reptile genomes for the use of the scientific community is an exceptional opportunity to study the evolution of immunoglobulin genes. The genome of Chrysemys picta bellii and Pelodiscus sinensis is the first one that has been reported for turtles. The scanning for immunoglobulin genes resulted in the presence of a complex locus for the immunoglobulin heavy chain (IGH). This IGH locus in both turtles contains genes for 13 isotypes in C. picta bellii and 17 in P. sinensis. These correspond with one immunoglobulin M, one immunoglobulin D, several immunoglobulins Y (six in C. picta bellii and eight in P. sinensis), and several immunoglobulins that are similar to immunoglobulin D2 (five in C. picta belli and seven in P. sinensis) that was previously described in Eublepharis macularius. It is worthy to note that IGHD2 are placed in an inverted transcriptional orientation and present sequences for two immunoglobulin domains that are similar to bird IgA domains. Furthermore, its phylogenetic analysis allows us to consider about the presence of IGHA gene in a primitive reptile, so we would be dealing with the memory of the gene that originated from the bird IGHA. In summary, we provide a clear picture of the immunoglobulins present in a turtle, whose analysis supports the idea that turtles emerged from the evolutionary line from the differentiation of birds and the presence of the IGHA gene present in a common ancestor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M et al (2010) A web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol 19(10):1–21

    Google Scholar 

  • Chiari Y, Cahais V, Galtier N, Delsuc P (2012) Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol 10:65

    Article  PubMed  Google Scholar 

  • Deza FG, Espinel CS, Beneitez JV (2007) A novel IgA-like immunoglobulin in the reptile Eublepharis macularius. Dev Comp Immunol 31(6):596–605

    Article  PubMed  Google Scholar 

  • Erickson GM, Rauhut OWM, Zhou Z, Turner AH, Inouye BD, Hu D et al (2009) Was dinosaurian physiology inherited by birds? Reconciling slow growth in archaeopteryx. PLoS One 4(10):e7390

    Article  PubMed  Google Scholar 

  • Gambón Deza F, Sánchez Espinel C, Magadán Mompó S (2009) The immunoglobulin heavy chain locus in the reptile Anolis carolinensis. Mol Immunol 46(8–9):1679–1687

    Article  PubMed  Google Scholar 

  • Gambón-Deza F, Espinel CS (2008) IgD in the reptile leopard gecko. Mol Immunol 45(12):3470–3476

    Article  PubMed  Google Scholar 

  • Gambón-Deza F, Sánchez-Espinel C, Magadán-Mompó S (2009) The immunoglobulin heavy chain locus in the platypus (Ornithorhynchus anatinus). Mol Immunol 46(13):2515–2523

    Article  PubMed  Google Scholar 

  • Gambón-Deza F, Sánchez-Espinel C, Mirete-Bachiller S, Magadán-Mompó S (2012) Snakes antibodies. Dev Comp Immunol 38(1):1–9

    Article  PubMed  Google Scholar 

  • Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P et al (2005) Galaxy: A platform for interactive large-scale genome analysis. Genome Research 15:1451–1455

    Google Scholar 

  • Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86

    Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224

    Article  PubMed  CAS  Google Scholar 

  • Higgins DA, Warr GW (1993) Duck immunoglobulins: structure, functions and molecular genetics. Avian Pathol 22(2):211–236

    Article  PubMed  CAS  Google Scholar 

  • Janes DE, Organ CL, Fujita MK, Shedlock AM, Edwards SV (2010) Genome evolution in Reptilia, the sister group of mammals. Annu Rev Genom Hum Genet 11:239–264

    Article  CAS  Google Scholar 

  • Lukoschek V, Scott Keogh J, Avise JC (2012) Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches. Syst Biol 61(1):22–43

    Article  PubMed  Google Scholar 

  • Lundqvist ML, Middleton DL, Hazard S, Warr GW (2001) The immunoglobulin heavy chain locus of the duck. Genomic organization and expression of D, J, and C region genes. J Biol Chem 276(50):46729–46736

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist ML, Middleton DL, Radford C, Warr GW, Magor KE (2006) Immunoglobulins of the non-galliform birds: antibody expression and repertoire in the duck. Dev Comp Immunol 30(1–2):93–100

    Article  PubMed  CAS  Google Scholar 

  • Magor KE, Higgins DA, Middleton DL, Warr GW (1994) One gene encodes the heavy chains for three different forms of IgY in the duck. J Immunol 153(12):5549–5555

    PubMed  CAS  Google Scholar 

  • Modesto S, Anderson J (2004) The phylogenetic definition of reptilia. Syst Biol 53(5):815–821

    Article  PubMed  Google Scholar 

  • Nei M, Rooney A (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  PubMed  CAS  Google Scholar 

  • Paul WE (2008) Fundamental immunology. Lippincott, Philadelphia

    Google Scholar 

  • Qin T, Ren L, Hu X, Guo Y, Fei J, Zhu Q et al (2008) Genomic organization of the immunoglobulin light chain gene loci in Xenopus tropicalis: evolutionary implications. Dev Comp Immunol 32(2):156–165

    Article  PubMed  CAS  Google Scholar 

  • Shedlock A, Botka C, Zhao S, Shetty J, Zhang T, Liu J et al (2007) Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome. Proc Natl Acad Sci U S A 104(8):2767–2772

    Article  PubMed  CAS  Google Scholar 

  • Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7(Suppl 1):S10.1–S1012

    Article  Google Scholar 

  • Stanke M, Steinkamp R, Waack S, Morgenstern B (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 32(Web Server issue):W309–W312

    Google Scholar 

  • Steiger SS, Kuryshev VY, Stensmyr MC, Kempenaers B, Mueller JC (2009) A comparison of reptilian and avian olfactory receptor gene repertoires: species-specific expansion of group gamma genes in birds. BMC Genom 10:446

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Turchin A, Hsu E (1996) The generation of antibody diversity in the turtle. J Immunol 156(10):3797–3805

    PubMed  CAS  Google Scholar 

  • Wei Z, Wu Q, Ren L, Hu X, Guo Y, Warr GW et al (2009) Expression of IgM, IgD, and IgY in a reptile, Anolis carolinensis. J Immunol 183(6):3858–3864

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Wang GL, Nie P (2009) IgM, IgD and IgY and their expression pattern in the Chinese soft-shelled turtle Pelodiscus sinensis. Mol Immunol 46(10):2124–2132

    Article  PubMed  CAS  Google Scholar 

  • Yao H, Guo L, Fu Y, Borsuk LA, Wen TJ, Skibbe DS et al (2005) Evaluation of five ab initio gene prediction programs for the discovery of maize genes. Plant Mol Biol 57(3):445–460

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Rabbani H, Shimizu A, Hammarström L (2000) Mapping of the chicken immunoglobulin heavy-chain constant region gene locus reveals an inverted alpha gene upstream of a condensed upsilon gene. Immunology 101(3):348–353

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Pan-Hammarström Q, Yu S, Wertz N, Zhang X, Li N et al (2006) Identification of IgF, a hinge-region-containing Ig class, and IgD in Xenopus tropicalis. Proc Natl Acad Sci U S A 103(32):12087–12092

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. David Olivieri (Escuela Superior de Ingeniería Informática University of Vigo, Spain) for the critical appreciation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Gambón-Deza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional File 1

IgM sequences alignment. The figure shows the alignment of the IgM-deduced amino acid sequences of the turtles with that known from other reptiles, amphibian, mammal, and fish. Cysteine and tryptophan residues are marked (PDF 266 kb)

Additional File 2

Amino acid sequence alignment of different IgD heavy chains. The alignment was constructed with the different IgD sequences identified in turtles. The IgD sequences from other reptiles and the sequences of O. anatinus are also shown. Cysteine and tryptophan residues are marked (PDF 185 kb)

Additional File 3

Amino acid sequence alignment of different IgY heavy chains. The alignment was constructed with the different IgY sequences identified in turtles. Cysteine and tryptophan residues are marked (PDF 111 kb)

Additional File 4

Amino acid sequence alignment of different IgD2 heavy chains. The alignment was constructed with the different IgD2 sequences identified in turtles. Cysteine and tryptophan residues are marked (PDF 127 kb)

Additional File 5

The first IGHD2 gene in C. picta bellii. Graphical representation of IgD2-1, IgD2-2, IgD2-4, and the first four domains of the IgD identified in C. picta bellii. The percentage of amino acid sequence identity between different paralogue domains is indicated: in blue, those with identity lower than 88 % (Cδ domains from IgD2-1 and IgD) and in red, those that have more than 88 % identity (Cδ domains from IgD2-2, IgD2-4 and IgD, and Cα domains from all IgD2 isotypes) (PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magadán-Mompó, S., Sánchez-Espinel, C. & Gambón-Deza, F. Immunoglobulin genes of the turtles. Immunogenetics 65, 227–237 (2013). https://doi.org/10.1007/s00251-012-0672-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-012-0672-7

Keywords

Navigation