Skip to main content
Log in

Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii)

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Within the mammalian immune system, natural killer (NK) cells contribute to the first line of defence against infectious agents and tumours. Their activity is regulated, in part, by cell surface NK cell receptors. NK receptors can be divided into two unrelated, but functionally analogous superfamilies based on the structure of their extracellular ligand-binding domains. Receptors belonging to the C-type lectin superfamily are predominantly encoded in the natural killer complex (NKC), while receptors belonging to the immunoglobulin superfamily are predominantly encoded in the leukocyte receptor complex (LRC). Natural killer cell receptors are emerging as a rapidly evolving gene family which can display significant intra- and interspecific variation. To date, most studies have focused on eutherian mammals, with significantly less known about the evolution of these receptors in marsupials. Here, we describe the identification of 43 immunoglobulin domain-containing LRC genes in the genome of the Tasmanian devil (Sarcophilus harrisii), the largest remaining marsupial carnivore and only the second marsupial species to be studied. We also identify orthologs of NKC genes KLRK1, CD69, CLEC4E, CLEC1B, CLEC1A and an ortholog of an opossum NKC receptor. Characterisation of these regions in a second, distantly related marsupial provides new insights into the dynamic evolutionary histories of these receptors in mammals. Understanding the functional role of these genes is also important for the development of therapeutic agents against Devil Facial Tumour Disease, a contagious cancer that threatens the Tasmanian devil with extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Anderson KJ, Allen RL (2009) Regulation of T-cell immunity by leucocyte immunoglobulin-like receptors: innate immune receptors for self on antigen-presenting cells. Immunology 127:8–17

    Article  PubMed  CAS  Google Scholar 

  • Barrow A, Trowsdale J (2008) The extended human leukocyte receptor complex: diverse ways of modulating immune responses. Immunol Rev 224:98–123

    Article  PubMed  CAS  Google Scholar 

  • Belov K, Sanderson CE, Deakin JE, Wong ESW, Assange D, McColl KA, Gout A, de Bono B, Barrow AD, Speed TP, Trowsdale J, Papenfuss AT (2007) Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system. Genome Res 17:982–991

    Article  PubMed  CAS  Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512

    Article  PubMed  CAS  Google Scholar 

  • Blasioli J, Paust S, Thomas ML (1999) Definition of the sites of interaction between the protein tyrosine phosphatase SHP-1 and CD22. J Biol Chem 274:2303–2307

    Article  PubMed  CAS  Google Scholar 

  • Brown GK, Kreiss A, Lyons AB, Woods GM (2011) Natural killer cell mediated cytotoxic responses in the Tasmanian devil. PLoS One 6:e24475

    Article  PubMed  CAS  Google Scholar 

  • Burgess SJ, Maasho K, Masilamani M, Narayanan S, Borrego F, Coligan JE (2008) The NKG2D receptor: immunobiology and clinical implications. Immunol Res 40:18–34

    Article  PubMed  CAS  Google Scholar 

  • Cao H, de Bono B, Belov K, Wong E, Trowsdale J, Barrow A (2009) Comparative genomics indicates the mammalian CD33rSiglec locus evolved by an ancient large-scale inverse duplication and suggests all Siglecs share a common ancestral region. Immunogenetics 61:401–417

    Article  PubMed  CAS  Google Scholar 

  • Chiang H-I, Zhou H, Raudsepp T, Jesudhasan P, Zhu J (2007) Chicken CD69 and CD94/NKG2-like genes in a chromosomal region syntenic to mammalian natural killer gene complex. Immunogenetics 59:603–611

    Article  PubMed  CAS  Google Scholar 

  • Colonna M, Samaridis J, Angman L (2000) Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur J Immunol 30:697–704

    Article  PubMed  CAS  Google Scholar 

  • Cummings RD, McEver RP (2009) C-type lectins. In: Varki A, Cummings R, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Desai S, Heffelfinger A, Orcutt T, Litman G, Yoder J (2008) The medaka novel immune-type receptor (NITR) gene clusters reveal an extraordinary degree of divergence in variable domains. BMC Evol Biol 8:177

    Article  PubMed  Google Scholar 

  • Eagle RA, Trowsdale J (2007) Promiscuity and the single receptor: NKG2D. Nat Rev Immunol 7:737–744

    Article  PubMed  CAS  Google Scholar 

  • Edgar R (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 5:113

    Article  Google Scholar 

  • Flornes LM, Bryceson YT, Spurkland A, Lorentzen JC, Dissen E, Fossum S (2004) Identification of lectin-like receptors expressed by antigen presenting cells and neutrophils and their mapping to a novel gene complex. Immunogenetics 56:506–517

    Article  PubMed  CAS  Google Scholar 

  • Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11:123–134

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hao L, Klein J, Nei M (2006) Heterogeneous but conserved natural killer receptor gene complexes in four major orders of mammals. Proc Natl Acad Sci U S A 103:3192–3197

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22:2971–2972

    Article  PubMed  CAS  Google Scholar 

  • Holz P (2008) Dasyurids. In: Vogelnest V, Woods R (eds) Medicine of Australian mammals. CSIRO Publishing, Melbourne, pp 359–382

    Google Scholar 

  • Kammerer R, Zimmermann W (2010) Coevolution of activating and inhibitory receptors within mammalian carcinoembryonic antigen families. BMC Biol 8:12

    Article  PubMed  Google Scholar 

  • Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of natural killer cell receptor gene clusters. PLoS Genet 1:e27

    Article  Google Scholar 

  • Kirsch JAW, Springer MS, Lapointe FJ (1997) DNA-hybridisation studies of marsupials and their implications for metatherian classification. Aust J Zool 45:211–280

    Article  CAS  Google Scholar 

  • Laun K, Coggill P, Palmer S, Sims S, Ning Z, Ragoussis J, Volpi E, Wilson N, Beck S, Ziegler A, Volz A (2006) The leukocyte receptor complex in chicken is characterized by massive expansion and diversification of immunoglobulin-like loci. PLoS Genet 2:e73

    Article  PubMed  Google Scholar 

  • Martin AM, Kulski JK, Witt C, Pontarotti P, Christiansen FT (2002) Leukocyte Ig-like receptor complex (LRC) in mice and men. Trends Immunol 23:81–88

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Gomez M, Lamana A, Cruz-Adalia A, Ramirez-Huesca M, Ursa MA, Yanez-Mo M, Sanchez-Madrid F (2010) CD69 association with Jak3/Stat5 proteins regulates Th17 cell differentiation. Mol Cell Biol 30:4877–4889

    Article  PubMed  CAS  Google Scholar 

  • McIntire RH, Sifers T, Platt JS, Ganacias KG, Langat DK, Hunt JS (2008) Novel HLA-G-binding leukocyte immunoglobulin-like Receptor (LILR) expression patterns in human placentas and umbilical cords. Placenta 29:631–638

    Article  PubMed  CAS  Google Scholar 

  • Miller W, Hayes VM, Ratan A, Petersen DC, Wittekindt NE, Miller J, Walenz B, Knight J, Qi J, Zhao F, Wang Q, Bedoya-Reina OC, Katiyar N, Tomsho LP, Kasson LM, Hardie R-A, Woodbridge P, Tindall EA, Bertelsen MF, Dixon D, Pyecroft S, Helgen KM, Lesk AM, Pringle TH, Patterson N, Zhang Y, Kreiss A, Woods GM, Jones ME, Schuster SC (2011) Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proc Natl Acad Sci 108:12348–12353

    Article  PubMed  CAS  Google Scholar 

  • Murchison EP, Schulz-Trieglaff OB, Ning Z, Alexandrov LB, Bauer MJ, Fu B, Hims M, Ding Z, Ivakhno S, Stewart C, Ng BL, Wong W, Aken B, White S, Alsop A, Becq J, Bignell GR, Cheetham RK, Cheng W, Connor TR, Cox AJ, Feng Z-P, Gu Y, Grocock RJ, Harris SR, Khrebtukova I, Kingsbury Z, Kowarsky M, Kreiss A, Luo S, Marshall J, McBride DJ, Murray L, Pearse A-M, Raine K, Rasolonjatovo I, Shaw R, Tedder P, Tregidgo C, Vilella AJ, Wedge DC, Woods GM, Gormley N, Humphray S, Schroth G, Smith G, Hall K, Searle SMJ, Carter NP, Papenfuss AT, Futreal PA, Campbell PJ, Yang F, Bentley DR, Evers DJ, Stratton MR (2012) Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148:780–791

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  PubMed  CAS  Google Scholar 

  • Nieswandt B, Watson SP (2003) Platelet-collagen interaction: is GPVI the central receptor? Blood 102:449–461

    Article  PubMed  CAS  Google Scholar 

  • Nylenna Ø, Naper C, Vaage JT, Woon PY, Gauguier D, Dissen E, Ryan JC, Fossum S (2005) The genes and gene organization of the Ly49 region of the rat natural killer cell gene complex. Eur J Immunol 35:261–272

    Article  PubMed  CAS  Google Scholar 

  • Ozaki Y, Suzuki-Inoue K, Inoue O (2009) Novel interactions in platelet biology: CLEC-2/podoplanin and laminin/GPVI. J Thromb Haemost 7:191–194

    Article  PubMed  CAS  Google Scholar 

  • Pearse AM, Swift K (2006) Allograft theory: transmission of devil facial-tumour disease. Nature 439:549

    Article  PubMed  CAS  Google Scholar 

  • Renfree M, Papenfuss A, Deakin J, Lindsay J, Heider T, Belov K, Rens W, Waters P, Pharo E, Shaw G, Wong E, Lefevre C, Nicholas K, Kuroki Y, Wakefield M, Zenger K, Wang C, Ferguson-Smith M, Nicholas F, Hickford D, Yu H, Short K, Siddle H, Frankenberg S, Chew K, Menzies B, Stringer J, Suzuki S, Hore T, Delbridge M (2011) Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol 12:414

    Article  Google Scholar 

  • Rogers SL, Göbel TW, Viertlboeck BC, Milne S, Beck S, Kaufman J (2005) Characterization of the chicken C-type lectin-like receptors B-NK and B-lec suggests that the NK complex and the MHC share a common ancestral region. J Immunol 174:3475–3483

    PubMed  CAS  Google Scholar 

  • Sanderson CE (2009) Immune genes: genomic and diversity studies in marsupials and monotremes. Dissertation, University of Sydney

  • Sato A, Mayer WE, Overath P, Klein J (2003) Genes encoding putative natural killer cell C-type lectin receptors in teleostean fishes. Proc Natl Acad Sci 100:7779–7784

    Article  PubMed  CAS  Google Scholar 

  • Séverin S, Pollitt AY, Navarro-Nuñez L, Nash CA, Mourão-Sá D, Eble JA, Senis YA, Watson SP (2011) Syk-dependent phosphorylation of CLEC-2. J Biol Chem 286:4107–4116

    Article  PubMed  Google Scholar 

  • Sloane DE, Tedla N, Awoniyi M, MacGlashan DW, Borges L, Austen KF, Arm JP (2004) Leukocyte immunoglobulin-like receptors: novel innate receptors for human basophil activation and inhibition. Blood 104:2832–2839

    Article  PubMed  CAS  Google Scholar 

  • Sobanov Y, Bernreiter A, Derdak S, Mechtcheriakova D, Schweighofer B, Düchler M, Kalthoff F, Hofer E (2001) A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. Eur J Immunol 31:3493–3503

    Article  PubMed  CAS  Google Scholar 

  • Suzuki-Inoue K, Fuller GLJ, García Á, Eble JA, Pöhlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing GD, Theakston RDG, Schweighoffer E, Zitzmann N, Morita T, Tybulewicz VLJ, Ozaki Y, Watson SP (2006) A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107:542–549

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Yawata M, Raudsepp T, Lear TL, Chowdhary BP, Antczak DF, Kasahara M (2004) Natural killer cell receptors in the horse: evidence for the existence of multiple transcribed Ly49 genes. Eur J Immunol 34:773–784

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Thebault P, Lhermite N, Tilly G, Le Texier L, Quillard T, Heslan M, Anegon I, Soulillou J-P, Brouard S, Charreau B, Cuturi M-C, Chiffoleau E (2009) The C-type lectin-like receptor CLEC-1, expressed by myeloid cells and endothelial cells, is up-regulated by immunoregulatory mediators and moderates T cell activation. J Immunol 183:3099–3108

    Article  PubMed  CAS  Google Scholar 

  • Varki A, Crocker PR (2009) I-type lectins. In: Varki A, Cummings R, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Viertlboeck BC, Habermann FA, Schmitt R, Groenen MAM, Du Pasquier L, Göbel TW (2005) The chicken leukocyte receptor complex: a highly diverse multigene family encoding at least six structurally distinct receptor types. J Immunol 175:385–393

    PubMed  CAS  Google Scholar 

  • Walker JA, Smith KGC (2008) CD22: an inhibitory enigma. Immunology 123:314–325

    Article  PubMed  CAS  Google Scholar 

  • Wong ES, Sanderson CE, Deakin JE, Whittington CM, Papenfuss AT, Belov K (2009) Identification of natural killer cell receptor clusters in the platypus genome reveals an expansion of C-type lectin genes. Immunogenetics 61:565–579

    Article  PubMed  CAS  Google Scholar 

  • Wong E, Papenfuss A, Belov K (2011) Immunome database for marsupials and monotremes. BMC Immunol 12:48

    Article  PubMed  CAS  Google Scholar 

  • Woods G, Kreiss A, Belov K, Siddle H, Obendorf D, Muller H (2007) The immune response of the Tasmanian devil (Sarcophilus harrisii) and devil facial tumour disease. Ecohealth 4:338–345

    Article  Google Scholar 

  • Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T (2008) Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 9:1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki S, Matsumoto M, Takeuchi O, Matsuzawa T, Ishikawa E, Sakuma M, Tateno H, Uno J, Hirabayashi J, Mikami Y, Takeda K, Akira S, Saito T (2009) C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci 106:1897–1902

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA (2004) Investigating the morphology, function and genetics of cytotoxic cells in bony fish. Comp Biochem Physiol 138:271–280

    Google Scholar 

  • Yoder J, Litman G (2011) The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics 63:123–141

    Article  PubMed  CAS  Google Scholar 

  • Yoder J, Cannon J, Litman R, Murphy C, Freeman J, Litman G (2008) Evidence for a transposition event in a second NITR gene cluster in zebrafish. Immunogenetics 60:257–265

    Article  PubMed  CAS  Google Scholar 

  • Zelensky AN, Gready JE (2003) Comparative analysis of structural properties of the C-type-lectin-like domain (CTLD). Protein Struct Funct Bioinform 52:466–477

    Article  CAS  Google Scholar 

  • Zelensky A, Gready J (2004) C-type lectin-like domains in Fugu rubripes. BMC Genomics 5:51

    Article  PubMed  Google Scholar 

  • Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272:6179–6217

    Article  PubMed  CAS  Google Scholar 

  • Ziegler SF, Ramsdell F, Hjerrild KA, Armitage RJ, Grabstein KH, Hennen KB, Farrah T, Fanslow WC, Shevach EM, Alderson MR (1993) Molecular characterization of the early activation antigen CD69: a type II membrane glycoprotein related to a family of natural killer cell activation antigens. Eur J Immunol 23:1643–1648

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council. KB is an ARC Future Fellow. We thank Tony Papenfuss from the Walter and Eliza Hall Institute for access to genomic resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Belov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.18 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Kraan, L.E., Wong, E.S.W., Lo, N. et al. Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii). Immunogenetics 65, 25–35 (2013). https://doi.org/10.1007/s00251-012-0643-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-012-0643-z

Keywords

Navigation