Skip to main content
Log in

A dual mechanism for impairment of GABAA receptor activity by NMDA receptor activation in rat cerebellum granule cells

  • ARTICLE
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The function of the GABAA receptor has been studied using the whole cell voltage clamp recording technique in rat cerebellum granule cells in culture. Activation of NMDA-type glutamate receptors causes a reduction in the effect of GABA. Full GABAA receptor activity was recovered after washing out NMDA and NMDA action was prevented in a Mg++ containing medium. The NMDA effect was also absent when extracellular Ca++ was replaced by Ba++ and when 10 mM Bapta was present in the intracellular solution. Charge accumulations via voltage activated Ca++ channels greater than the ones via NMDA receptors do not cause any reduction in GABAA receptor function, suggesting that Ca++ influx through NMDA receptor channels is critical for the effect. The NMDA effect was reduced by including adenosine-5′-O-3-thiophosphate (ATP-γ-S) in the internal solution and there was a reduction in the NMDA effect caused by deltamethrin, a calcineurin inhibitor. Part of the NMDA induced GABAA receptor impairment was prevented by prior treatment with L-arginine. Analogously, part of the NMDA effect was prevented by blockage of NO-synthase activity by N ω -nitro-L-arginine. A combination of NO-synthase and calcineurin inhibitors completely eliminated the NMDA action. An analogous result was obtained by combining the NO-synthase inhibitor with the addition of ATP-γ-S to the pipette medium. The additivity of the prevention of the NMDA impairment of GABAA receptor by blocking the L-arginine/NO pathway and inhibiting calcineurin activity suggests an independent involvement of these two pathways in the interaction between NMDA and the GABAA receptor. On the one hand Ca++ influx across NMDA channels activates calcineurin and dephosphorylates the GABAA receptor complex directly or dephosphorylates proteins critical for the function of the receptor. On the other hand, Ca++ influx activates NO-synthase and induces nitric oxide production, which regulates such receptors via protein kinase G activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 22 July 1996 / Accepted: 29 October 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robello, M., Amico, C. & Cupello, A. A dual mechanism for impairment of GABAA receptor activity by NMDA receptor activation in rat cerebellum granule cells. Eur Biophys J 25, 181–187 (1997). https://doi.org/10.1007/s002490050030

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002490050030

Navigation