Skip to main content
Log in

A pH-dependent charge reversal peptide for cancer targeting

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Naturally occurring cationic antimicrobial peptides exhibit not only antimicrobial activity, but also anticancer activity and are expected to be new weapons in cancer treatment. The selectivity for cancer cells over normal cells is at least partly due to the more negative surface of cancer cells. A lower pH in tumor tissue (pH 6.2–6.9) than that in normal tissues (pH 7.3–7.4) has also been utilized to develop anticancer agents. However, cytotoxicity against normal cells at physiological pH is often an issue. Furthermore, acidic regions can be found in some normal tissues such as the kidneys. Therefore, existing approaches to cancer targeting are not fully satisfactory. In this study, we designed a peptide, HE (GIHHWLHSAHEFGEHFVHHIMNS-amide), with a charge that reverses from −1.5 at pH 7.4 to +6 at pH 5.5 for cancer targeting at low pH based on the antimicrobial peptide magainin 2 by introducing 6 His, an additional Glu, and an amidated terminal. HE interacted with cancer-mimicking negatively charged liposomes in a pH-dependent fashion with a midpoint with a pH of 6.5 just above the membrane surface. The peptide killed human renal adenocarcinoma ACHN cells at pH 6.0, but not at pH 7.4, and was nontoxic against human normal glomerular mesangial cells even at this low pH. Thus, the novel peptide may be a promising lead peptide for cancer therapy, although this derivatization resulted in weakened cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

The diagrams were generated with a script made by Drs. Don Armstrong and Raphael Zidovetzki, University of California, Riverside (http://rzlab.ucr.edu/scripts/wheel/wheel.cgi)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Benna S, Shai Y, Jacobsen F, Steinstraesser L (2011) Oncolytic activities of host defense peptides. Int J Mol Sci 12:8027–8051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreev OA, Dupuy AD, Segala M, Sandugu S, Serra DA, Chichester CO, Engelman DM, Reshetnyak YK (2007) Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo. Proc Natl Acad Sci USA 104:7893–7898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apponyi MA, Pukala TL, Brinkworth CS, Maselli VM, Bowie JH, Tyler MJ, Booker GW, Wallace JC, Carver JA, Separovic F, Doyle J, Llewellyn LE (2004) Host-defence peptides of Australian anurans: structure, mechanism of action and evolutionary significance. Peptides 25:1035–1054

    Article  CAS  PubMed  Google Scholar 

  • Baker MA, Maloy WL, Zasloff M, Jacob LS (1993) Anticancer efficacy of magainin2 and analogue peptides. Cancer Res 53:3052–3057

    CAS  PubMed  Google Scholar 

  • Binder H, Gawrisch K (2001) Dehydration induces lateral expansion of polyunsaturated 18:0–22:6 phosphatidylcholine in a new lamellar phase. Biophys J 81:969–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böhme D, Beck-Sickinger AG (2015) Drug delivery and release systems for targeted tumor therapy. J Pept Sci 21:186–200

    Article  PubMed  Google Scholar 

  • Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5:786–795

    Article  CAS  PubMed  Google Scholar 

  • Cruciani RA, Barker JL, Zasloff M, Chen H-C, Colamonici O (1991) Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci USA 88:3792–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dathe M, Wieprecht T, Nikolenko H, Handel L, Maloy WL, MacDonald DL, Beyermann M, Bienert M (1997) Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett 403:208–212

    Article  CAS  PubMed  Google Scholar 

  • Fjell CD, Hiss JA, Hancock RE, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51

    CAS  Google Scholar 

  • Haney EF, Hancock RE (2013) Peptide design for antimicrobial and immunomodulatory applications. Biopolymers 100:572–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375

    Article  CAS  PubMed  Google Scholar 

  • Imura Y, Choda N, Matsuzaki K (2008) Magainin 2 in action: distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys J 95:5757–5765

    Article  PubMed  PubMed Central  Google Scholar 

  • Imura Y, Nishida M, Matsuzaki K (2007) Action mechanism of PEGylated magainin 2 analogue peptide. Biochim Biophys Acta 1768:2578–2585

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki T, Ishibashi J, Tanaka H, Sato M, Asaoka A, Taylor D, Yamakawa M (2009) Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides 30:660–668

    Article  CAS  PubMed  Google Scholar 

  • Jin E, Zhang B, Sun X, Zhou Z, Ma X, Sun Q, Tang J, Shen Y, Van Kirk E, Murdoch WJ, Radosz M (2013) Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J Am Chem Soc 135:933–940

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788:1687–1692

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Harada M, Funakoshi S, Fujii N, Miyajima K (1991) Physichochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim Biophys Acta 1063:162–170

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Murase O, Tokuda H, Funakoshi S, Fujii N, Miyajima K (1994) Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry 33:3342–3349

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Murase O, Fujii N, Miyajima K (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35:11361–11368

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Sugishita K, Fujii N, Miyajima K (1995) Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34:3423–3429

    Article  CAS  PubMed  Google Scholar 

  • Mizuhara T, Saha K, Moyano DF, Kim CS, Yan B, Kim YK, Rotello VM (2015) Acylsulfonamide-functionalized zwitterionic gold nanoparticles for enhanced cellular uptake at tumor pH. Angew Chem Int Ed Engl 54:6567–6570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatsuji T, Gallo RL (2012) Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol 132:887–895

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VP, Alves DS, Scott HL, Davis FL, Barrera FN (2015) A novel soluble peptide with pH-responsive membrane insertion. Biochemistry 54:6567–6575

    Article  CAS  PubMed  Google Scholar 

  • Onyango JO, Chung MS, Eng CH, Klees LM, Langenbacher R, Yao L, An M (2015) Noncanonical amino acids to improve the pH response of pHLIP insertion at tumor acidity. Angew Chem Int Ed Engl 54:3658–3663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papo N, Shai Y (2003) New lytic peptides based on the d, l-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Biochemistry 42:9346–9354

    Article  CAS  PubMed  Google Scholar 

  • Papo N, Shai Y (2005) Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci 62:784–790

    Article  CAS  PubMed  Google Scholar 

  • Riedl S, Zweytick D, Lohner K (2011) Membrane-active host defense peptides-challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 164:766–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer F (2009) Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol 625:190–194

    Article  CAS  PubMed  Google Scholar 

  • Song J, Zhang W, Kai M, Chen J, Liang R, Zheng X, Li G, Zhang B, Wang K, Zhang Y, Yang Z, Ni J, Wang R (2013) Design of an acid-activated antimicrobial peptide for tumor therapy. Mol Pharm 10:2934–2941

    Article  CAS  PubMed  Google Scholar 

  • Sun CY, Shen S, Xu CF, Li HJ, Liu Y, Cao ZT, Yang XZ, Xia JX, Wang J (2015) Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. J Am Chem Soc 137:15217–15224

    Article  CAS  PubMed  Google Scholar 

  • Tachi T, Epand RF, Epand RM, Matsuzaki K (2002) Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide–lipid interactions and selective toxicity. Biochemistry 41:10723–10731

    Article  CAS  PubMed  Google Scholar 

  • Takeshima K, Chikushi A, Lee K-K, Yonehara S, Matsuzaki K (2003) Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. J Biol Chem 278:1310–1315

    Article  CAS  PubMed  Google Scholar 

  • Uematsu N, Matsuzaki K (2000) Polar Angle as a Determinant of amphipathic α-helix-lipid interactions: a model peptide study. Biophys J 79:2075–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallabhapurapu SD, Blanco VM, Sulaiman MK, Vallabhapurapu SL, Chu Z, Franco RS, Qi X (2015) Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium. Oncotarget 6:34375–34388

    PubMed  PubMed Central  Google Scholar 

  • Wenk MR, Seelig J (1998) Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation. Biochemistry 37:3909–3916

    Article  CAS  PubMed  Google Scholar 

  • Winiski AP, McLaughlin AC, McDaniel RV, Eisenberg M, McLaughlin S (1986) An experimental test of the discreteness-of-charge effect in positive and negative lipid bilayers. Biochemistry 25:8206–8214

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Meng H, Wang N, Donovan MJ, Fu T, You M, Chen Z, Zhang X, Tan W (2013) A controlled-release nanocarrier with extracellular pH value driven tumor targeting and translocation for drug delivery. Angew Chem Int Ed Engl 52:7487–7491

    Article  CAS  PubMed  Google Scholar 

  • Zhou NE, Kay CM, Hodges RS (1992) Synthetic model proteins. Positional effects of interchain hydrophobic interactions on stability of two-stranded α-helical coiled-coils. J Biol Chem 267:2664–2670

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumi Matsuzaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 573 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakabayashi, N., Yano, Y., Kawano, K. et al. A pH-dependent charge reversal peptide for cancer targeting. Eur Biophys J 46, 121–127 (2017). https://doi.org/10.1007/s00249-016-1145-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-016-1145-y

Keywords

Navigation