Skip to main content
Log in

The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Surface layer (S-layer) proteins have been identified in the cell envelope of many organisms, such as bacteria and archaea. They self-assemble, forming monomolecular crystalline arrays. Isolated S-layer proteins are able to recrystallize into regular lattices, which proved useful in biotechnology. Here we investigate the structure and thermal unfolding of the S-layer protein isolated from Lactobacillus salivarius 16 strain of human origin. Using circular dichroism (CD) spectroscopy, and the software CDSSTR from DICHROWEB, CONTINLL from CDPro, as well as CDNN, we assess the fractions of the protein’s secondary structural elements at temperatures ranging between 10 and 90 °C, and predict the tertiary class of the protein. To study the thermal unfolding of the protein, we analyze the temperature dependence of the CD signal in the far- and near-UV domains. Fitting the experimental data by two- and three-state models of thermal unfolding, we infer the midpoint temperatures, the temperature dependence of the changes in Gibbs free energy, enthalpy, and entropy of the unfolding transitions in standard conditions, and the temperature dependence of the equilibrium constant. We also estimate the changes in heat capacity at constant pressure in standard conditions. The results indicate that the thermal unfolding of the S-layer protein from L. salivarius is highly cooperative, since changes in the secondary and tertiary structures occur simultaneously. The thermodynamic analysis predicts a “cold” transition, at about −3 °C, of both the secondary and tertiary structures. Our findings may be important for the use of S-layer proteins in biotechnology and in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Åvall-Jääskeläinen S, Palva A (2005) Lactobacillus surface layers and their applications. FEMS Microbiol Rev 29:511–529

    Article  PubMed  Google Scholar 

  • Baldwin R (1986) Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci USA 83:8069–8072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böhm G (1997) CDNN, a program written by Dr. Gerald Böhm. Institut für Biotechnologie, Martin-Luther Universität Halle-Wittenberg. http://www.xn--gerald-bhm-lcb.de/download/cdnn. Accessed 20 Jan 2016

  • Branden C, Tooze J (1999) Introduction to protein structure, 2nd edn. Garland Publishing, Inc., New York, pp 67–88

    Google Scholar 

  • Chen Y, Ding F, Nie H, Serohijos AW, Sharma S, Wilcox KC, Yin S, Dokholyan NV (2008) Protein folding: then and now. Arch Biochem Biophys 469:4–19

    Article  CAS  PubMed  Google Scholar 

  • Colton T (1974) Statistics in medicine. Little, Brown and Company, Boston

    Google Scholar 

  • Compton LA, Johnson WC Jr (1986) Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Anal Biochem 155:155–167

    Article  CAS  PubMed  Google Scholar 

  • Debabov VG (2004) Bacterial and archaeal S-layers as a subject of nanobiotechnology. Mol Biol 38:482–493

    Article  CAS  Google Scholar 

  • Dooley JSG, Mccubbin WD, Kay CM, Trust TJ (1988) Isolation and biochemical characterization of the S-layer protein from a pathogenic Aeromonas hydrophila strain. J Bacteriol 170:2631–2638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan J, Nilsson L (2005) Thermal unfolding simulations of a multimeric protein—transition state and unfolding pathways. Proteins 59:170–182

    Article  CAS  PubMed  Google Scholar 

  • Fagan RP, Albesa-Jové D, Qazi O, Svergun DI, Brown KA, Fairweathe NF (2009) Structural insights into the molecular organization of the S-layer from Clostridium difficile. Mol Microbiol 71:1308–1322

    Article  CAS  PubMed  Google Scholar 

  • Fan D-J, Ding Y-W, Pan X-M, Zhou J-M (2008) Thermal unfolding of Escherichia coli trigger factor studied by ultra-sensitive differential scanning calorimetry. Biochim Biophys Acta 1784:1728–1734

    Article  CAS  PubMed  Google Scholar 

  • Farci D, Bowler MW, Esposito F, McSweeney S, Tramontano E, Piano D (2015) Purification and characterization of DR_2577 (SlpA) a majorS-layer protein from Deinococcus radiodurans. Front Microbiol 6:414

    Article  PubMed  PubMed Central  Google Scholar 

  • Fessas D, Iametti S, Schiraldi A, Bonomi F (2001) Thermal unfolding of monomeric and dimeric β-lactoglobulins. Eur J Biochem 268:5439–5448

    Article  CAS  PubMed  Google Scholar 

  • Graziano G, Catanzano F, Barone G (1998) Prediction of the heat capacity change on thermal denaturation of globular proteins. Thermochim Acta 321:23–31

    Article  CAS  Google Scholar 

  • Habibi N, Pastorino L, Soumetz FC, Sbrana F, Raiteri R, Ruggiero C (2011) Nanoengineered polymeric S-layers based capsules with targeting activity. Colloids Surf B 88:366–372

    Article  CAS  Google Scholar 

  • Ilk N, Egelseer EM, Sleytr UB (2011) S-layer fusion proteins—construction principles and applications. Curr Opin Biotechnol 22:824–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jääskeläinen P, Engelhardt P, Hynönen U, Torkkeli M, Palva A, Serimaa R (2010) Small angle X-ray scattering and transmission electron microscopy study of the Lactobacillus brevis S-layer protein. J Phys Conf Ser 247:1–7. doi:10.1088/1742-6596/247/1/012017

    Article  Google Scholar 

  • Jackson SE, Fersht AR (1991) Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry 30:10428–10435

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke R, Welsch R, Sára M, Sleytr UB (1985) Stability and self-assembly of the S-layer protein of the cell wall of Bacillus stearothermophilus. Biol Chem Hoppe Seyler 366:663–670

    Article  CAS  PubMed  Google Scholar 

  • Kinns H, Howorka S (2008) The surface location of individual residues in a bacterial S-layer protein. J Mol Biol 377:589–604

    Article  CAS  PubMed  Google Scholar 

  • Koepf EK, Petrassi HM, Sudol M, Kelly JW (1999) WW: an isolated three-stranded antiparallel β-sheet domain that unfolds and refolds reversibly; evidence for a structured hydrophobic cluster in urea and GdnHCl and a disordered thermal unfolded state. Protein Sci 8:841–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lees JG, Miles AJ, Wien F, Wallace BA (2006) A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics 22:1955–1962

    Article  CAS  PubMed  Google Scholar 

  • Lighezan L, Georgieva R, Neagu A (2012) A study of the thermal denaturation of the S-layer protein from Lactobacillus salivarius. Phys Scr 86:035801

    Article  Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology. W. H. Freeman, New York

    Google Scholar 

  • Messner P, Sleytr UB (1992) Crystalline bacterial cell surface layers. Adv Microbiol Physiol 33:213–275

    Article  CAS  Google Scholar 

  • Meyer JD, Hanagan A, Manning MC, Catalano CE (1998) The phage lambda terminase enzyme: 1. Reconstitution of the holoenzyme from the individual subunits enhances the thermal stability of the small subunit. Int J Biol Macromol 23:27–36

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Saha B, Das AK (2009) Differential chemical and thermal unfolding pattern of Rv3588c and Rv1284 of Mycobacterium tuberculosis—a comparison by fluorescence and circular dichroism spectroscopy. Biophys Chem 141:94–104

    Article  CAS  PubMed  Google Scholar 

  • Neubauer A, Pum D, Sleytr UB (1993) An amperometric glucose sensor based on isoporous crystalline protein membranes as immobilization matrix. Anal Lett 26:1347–1360

    Article  CAS  Google Scholar 

  • Neubauer A, Hödl C, Pum D, Sleytr UB (1994) A multistep enzyme sensor for sucrose based on S-layer microparticles as immobilization matrix. Anal Lett 27:849–865

    Article  CAS  Google Scholar 

  • Neubauer A, Pum D, Sleytr UB, Klimant I, Wolfbeis OS (1996) Fibre-optic glucose biosensor using enzyme membranes with 2-D crystalline structure. Biosens Bioelectron 11:317–325

    Article  CAS  Google Scholar 

  • Pace CN, Shirley BA, Thomson JA (1987) Measuring the conformational stability of a protein. In: Creighton TE (ed) Protein structure, chap 13. IRL Press, New York, pp 311–330

  • Pavkov T, Egelseer EM, Tesarz M, Svergun DI, Sleytr UB, Keller W (2008) The structure and binding behavior of the bacterial cell surface layer protein SbsC. Structure 16:1226–1237

    Article  CAS  PubMed  Google Scholar 

  • Powers S, Robinson C, Robinson A (2007) Denaturation of an extremely stable hyperthermophilic protein occurs via a dimeric intermediate. Extremophiles 11:179–189

    Article  CAS  PubMed  Google Scholar 

  • Privalov P (1979) Stability of proteins: small globular proteins. Adv Protein Chem 33:167–241

    Article  CAS  PubMed  Google Scholar 

  • Privalov P (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305

    Article  CAS  PubMed  Google Scholar 

  • Provencher SW, Glockner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20:33–37

    Article  CAS  PubMed  Google Scholar 

  • Qi XL, Brownlow S, Holt C, Sellers P (1995) Thermal denaturation of β-lactoglobulin: effect of protein concentration at pH 6.75 and 8.05. Biochim Biophys Acta 1248:43–49

    Article  PubMed  Google Scholar 

  • Rezaei-Ghaleh N, Ramshini H, Ebrahim-Habibi A, Moosavi-Movahedi AA, Nemat-Gorgani M (2008) Thermal aggregation of α-chymotrypsin: role of hydrophobic and electrostatic interactions. Biophys Chem 132:23–32

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Hecht MH (2000) Cooperative thermal denaturation of proteins designed by binary patterning of polar and nonpolar amino acids. Biochemistry 39:4603–4607

    Article  CAS  PubMed  Google Scholar 

  • Rumfeldt JAO, Galvagnion C, Vassall KA, Meiering EM (2008) Conformational stability and folding mechanisms of dimeric proteins. Prog Biophys Mol Biol 98:61–84

    Article  CAS  PubMed  Google Scholar 

  • Rünzler D, Huber C, Moll D, Köhler G, Sára M (2004) Biophysical characterization of the entire bacterial surface layer protein SbsB and its two distinct functional domains. J Biol Chem 279:5207–5215

    Article  PubMed  Google Scholar 

  • Sanchez-Ruiz JM (2010) Protein kinetic stability. Biophys Chem 148:1–15

    Article  CAS  PubMed  Google Scholar 

  • Sára M, Sleytr UB (1996) Biotechnology and biomimetic with crystalline bacterial cell surface layers (S-layers). Micron 27:141–156

    Article  PubMed  Google Scholar 

  • Sára M, Sleytr UB (2000) S-layer proteins. J Bacteriol 182:859–868

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheicher SR, Kainz B, Köstler S, Suppan M, Bizzarri A, Pum D, Sleytr UB, Ribitsch V (2009) Optical oxygen sensors based on Pt(II) porphyrin dye immobilized on S-layer protein matrices. Biosens Bioelectron 25:797–802

    Article  CAS  PubMed  Google Scholar 

  • Schuster B (2005) Biomimetic design of nanopatterned membranes. Nanobiotechnology 1:153–164

    Article  CAS  Google Scholar 

  • Schuster B, Sleytr UB (2006) Biomimetic S-layer supported lipid membranes. Curr Nanosci 2:143–152

    Article  CAS  Google Scholar 

  • Schuster B, Sleytr UB (2009) Composite S-layer lipid structures. J Struct Biol 168:207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster B, Pum D, Sara M, Sleytr UB (2006) S-layer proteins as key components of a versatile molecular construction kit for biomedical nanotechnology. Mini Rev Med Chem 6:909–920

    Article  CAS  PubMed  Google Scholar 

  • Serdyuk IN, Zaccai NR, Zaccai J (2007) Methods in molecular biophysics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sleytr UB (1997) I. Basic and applied S-layer research: an overview. FEMS Microbiol Rev 20:5–12

    Article  CAS  Google Scholar 

  • Sleytr UB, Beveridge TJ (1999) Bacterial S-layers. Trends Microbiol 7:253–260

    Article  CAS  PubMed  Google Scholar 

  • Sleytr UB, Messner P (1983) Crystalline surface layers on bacteria. Annu Rev Microbiol 37:311–339

    Article  CAS  PubMed  Google Scholar 

  • Sleytr UB, Sára M, Pum D, Schuster B (2001) Characterization and use of crystalline bacterial cell surface layers. Prog Surf Sci 68:231–278

    Article  CAS  Google Scholar 

  • Sleytr UB, Egelseer EM, Ilk N, Pum D, Schuster B (2007) S-layers as a basic building block in a molecular construction kit. FEBS J 274:323–334

    Article  CAS  PubMed  Google Scholar 

  • Sreerama N, Woody RW (2000a) Circular dichroism of peptides and proteins. In: Berova N, Nakanishi K, Woody RW (eds) Circular dichroism: principles and applications, 2nd edn. Wiley, New York, pp 601–620

    Google Scholar 

  • Sreerama N, Woody RW (2000b) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260

    Article  CAS  PubMed  Google Scholar 

  • Tripathi T (2013) Calculation of thermodynamic parameters of protein unfolding using far-ultraviolet circular dichroism. J Proteins Proteomics 4:85–91

    Google Scholar 

  • van Stokkum IHM, Spoelder HJW, Bloemendal M, van Grondelle R, Groen FCA (1990) Estimation of protein secondary structure and error analysis from circular dichroism spectra. Anal Biochem 191:110–118

    Article  PubMed  Google Scholar 

  • Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki K, Iwura T, Murayama K, Ishikawa R, Ozaki Y (2005) Effects of the concentration and heating rate on the thermal denaturation and reversibility of granulocyte-colony stimulating factor studied by circular dichroism and infrared spectroscopy. Vib Spectrosc 38:33–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a fellowship awarded to L.L. by the Federation of European Biochemical Societies (FEBS). We are grateful to the late Dr. Constantin Crăescu for guidance and hospitality at the Curie Institute INSERM U759, Paris, France (L.L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Neagu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 431 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lighezan, L., Georgieva, R. & Neagu, A. The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius . Eur Biophys J 45, 491–509 (2016). https://doi.org/10.1007/s00249-016-1117-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-016-1117-2

Keywords

Navigation