Skip to main content

Advertisement

Log in

Phase transitions and structure analysis in wild-type, A30P, E46K, and A53T mutants of α-synuclein

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

α-Synuclein has been implicated in the development of neural plaques in Parkinson’s Disease and Lewy-Body Dementia. This paper reports on the structural phase change behavior exhibited over a relevant range of temperatures in canonical protein Monte Carlo simulations for wild-type α-synuclein and three of its familial variants. We performed and analyzed these simulations to determine residue occupancy variations above and below this phase transition. From this analysis, we found regions above the phase transition temperature that consistently exhibited increased propensity for formation of long-chain beta-sheets, suggesting a possible role in α-synuclein aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allison JR, Varnai P, Dobson CM, Vendruscolo M (2009) Determination of the free energy landscape of ɑ-synuclein using spin label nuclear magnetic resonance measurements. J Am Chem Soc 131:18314–18326

    Article  CAS  PubMed  Google Scholar 

  • Balesh DR, Ramjan Z, Floriano WB (2011) Unfolded annealing molecular dynamics conformers for wild-type and disease-associated variatns of alpha-synuclein show no propensity for beta-sheet formation. J Biophys Chem 2:123–133

    Article  CAS  Google Scholar 

  • Bermel WB, Bertini I, Felli I, Lee YM, Luchinat C, Kozminski W, Piai A, Pierattelli R, Stanek J, Zawadzka-Kazimierczuk A (2006) Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J Am Chem Soc 128:3918–3919

    Article  CAS  PubMed  Google Scholar 

  • Bertoncini CW, Fernandez C, Griesinger C, Jovin TM, Zwecksetter M (2005) Familial mutants of α-Synuclein with increased neurotoxicity have a destabilized conformation. J Biol Chem 280:30649–30652

    Article  CAS  PubMed  Google Scholar 

  • Binolfi A, Rasia RM, Bertoncini CM, Ceolin M, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO (2006) Interaction of ɑ-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement. J Am Chem Soc 128:9893–9901

    Article  CAS  PubMed  Google Scholar 

  • Breydo LW, Wu J, Uversky VN (2012) α-synuclein misfolding and Parkinson’s disease. Biochim Biophys Acta 1822:261–285

    Article  CAS  PubMed  Google Scholar 

  • Bussel R Jr, Eliezer D (2001) Residual structure and dynamics in Parkinson’s disease-associated mutants of ɑ-synuclein. J Biol Chem 276:45996–46003

    Article  Google Scholar 

  • Camilloni CV, Vendruscolo M (2013) A Relationship between the aggregation rates of α-synuclein variants and the β-Sheet populations in their monomeric forms. J Phys Chem B 117:10737–10741

    Article  CAS  PubMed  Google Scholar 

  • Case DA, Darden T, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, and Kollman PA (2012) Amber 12. Reference manual, University of California, San Francisco

  • Chen M, Margittai M, Jeannie C, Langen R (2007) Investigation of α-synuclein fibril structure by site-directed spin labelling. J Biol Chem 282:24970–24979

    Article  CAS  PubMed  Google Scholar 

  • Cho MK, Nodet G, Kim H-Y, Jensen MR, Bernado P, Fernandez CO, Becker S, Blackledge M, Zweckstetter M (2009) Structural characterization of ɑ-synuclein in an aggregation prone state. Protein Sci 18:1840–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi W, Zibaee S, Jakes R, Serpell LC, Daveletov B, Crowther RA, Goedert M (2004) Mutation E46K increases phospholipid binding and assembly into filaments of human alpha-synuclein. FEBS Lett 576:363–368

    Article  CAS  PubMed  Google Scholar 

  • Clayton DF, George JM (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci 21:249–254

    Article  CAS  PubMed  Google Scholar 

  • Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4:1318–1320

    Article  CAS  PubMed  Google Scholar 

  • Conway KA, Harper JD, Lansbury PT (2000) Fibrils formed in vitro from ɑ-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39:2552–2563

    Article  CAS  PubMed  Google Scholar 

  • Dedmon MM, Kresten LL, Christodoulou J, Vendruscolo M, Dobson CM (2005) Mapping long-range interactions in α-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc 127:476–477

    Article  CAS  PubMed  Google Scholar 

  • Diao J, Burré J, Vivona S, Cipriano DJ, Sharma M, Kyoung M, Sudhof TC, Brunger AT (2013) Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. eLife 2:e000592. doi:10.7554/eLife.00592

    Article  Google Scholar 

  • Eaton JW, Bateman D, Hauberg S (2009) (GNU Octave) version 3.0.1 manual: a high-level interactive language for numerical computations. CreateSpace Independent Publishing Platform

  • Eaton JW, Bateman D, Hauberg S, Wehbring R (2014) GNUT Octave version 3.8.1 manual: a high-level interactive language for numerical computations. CreateSpace Independent Publishing Platform. ISBN: 1441413006. http://www.gnu.org/software/octave/doc/interpreter

  • Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Wenger RK, Yao H, Markley JL (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408

    Article  CAS  PubMed  Google Scholar 

  • Ferreon ACM, Moran CR, Ferreon JC, Deniz AA (2010) Alteration of the α-synuclein folding landscape by a mutation related to Parkinson’s disease. Ang Chem Int Edition 49:3469–3472

    Article  CAS  Google Scholar 

  • Fredenburg RA, Rospigliosi C, Meray RK, Kessler JC, Lashuel HA, Eliezer D, Lansbury PT Jr (2007) The impact of the E46K mutation on the properties of alpha-synuclein in its monomeric and oligomeric states. Biochemistry 46:7107–7118

    Article  CAS  PubMed  Google Scholar 

  • Fusco G, Simone De A, Gopinath T, Vostrikov V, Vendruscolo M, Dobson CM, Veglia G (2014) Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nature Commun 5. doi:10.1038/ncomms4827

  • National Library of Medicine (US) (2015) Genetics home reference [Internet]. Cystic fibrosis. The Library, Bethesda, MD. http://ghr.nlm.nih.gov/gene/SNCA

  • Greenbaum EA, Graves C, Mishizen-Eberz AJ, Lupoli MA, Lynch DR, Englander SW, Axelsen PH, Giasson BI (2005) The E46K mutation in α-synuclein increases amyloid fibril formation. J Biol Chem 2800:7800–7807

    Article  Google Scholar 

  • Han B, Liu Y, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR. doi:10.1007/s10858-011-9478-4

    PubMed  PubMed Central  Google Scholar 

  • Heise H, Hoyer W, Becker S, Andronesi OC, Riedal D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length ɑ-synuclein fibrils studied by solid-state NMR. Proceeding of the national academy of sciences of the United States of America 102:15871–15876

    Article  CAS  Google Scholar 

  • Heise H, Celej M, Becker S, Riedel D, Pelah A, Kumar A, Jovin TM, Baldus M (2008) Solid-state NMR reveals structural differences between fibrils of wild-type and disease-related A53T mutant ɑ-synuclein. J Mol Biol 380:444–450

    Article  CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke, A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Irbäck A, Mohanty S (2006) PROFASI: a Monte Carlo simulation package for protein folding and aggregation. J Comput Chem 27:1548–1555

    Article  PubMed  Google Scholar 

  • Jensen PH, Nielsen M, Jakes R, Dotti CG, Goedert M (1998) Binding of α-Synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 273:26292–26294

    Article  CAS  PubMed  Google Scholar 

  • Jo E, Fuller N, Rand RP, St George-Hyslop P, Fraser PE (2002) Defective membrane interactions of familial Parkinson’s disease mutant A30P ɑ-synuclein. J Mol Biol 315:799–807

    Article  CAS  PubMed  Google Scholar 

  • Jónsson SA, Mohanty S, Irbäck A (2012) Distinct phase of free α-synuclein—a Monte Carlo study. Proteins 80:2169–2177

    Article  PubMed  Google Scholar 

  • Kim H-Y, Heise H, Fernandez CO, Baldus M, Zweckstetter M (2007) Correlation of amylioid fibril B-structure with the unfolded state of α-Synuclein. Chem BioChem 8:1671–1674

    CAS  Google Scholar 

  • Lee HJ, Bae E, Lee SJ (2014) Extracellular α-synuclein-a novel and crucial factor in Lewy body diseases. Nat Rev 10:92–98

    CAS  Google Scholar 

  • Lemkau LR, Comellas G, Kloepper KD, Woods WS, George JM, Rienstra CM (2012) Mutant Protein A30P α-synuclein adopts wild-type fibril structure, despite slower fibrillation kinetics. J Biol Chem 287:11526–11532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemkau LR, Comellas G, Lee SW, Rikardsen LK, Woods WS, George JM, Rienstra CM (2013) Site-specific perturbations of alpha-synuclein fibril structure by the Parkinson’s Disease Associated Mutations A53T and E46K. PLoS ONE 8:e49750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lendel C, Damberg P (2009) 3D J-resolved NMR spectroscopy for unstructured polypeptides: fast measurement of ^{3}J_{HNHα} coupling constants with outstanding spectral resolution. J Biomol NMR 44:35–42

    Article  CAS  PubMed  Google Scholar 

  • Li J, Uversky V, Fink AL (2001) Effect of familial Parkinson’s disease Point mutations A30P and A53T on the structural properties aggregation, and fibrillation of human α-Synuclein. Biochemistry 40:11604–11613

    Article  CAS  PubMed  Google Scholar 

  • Mitternacht SS, Staneva I, Hard T, Irback A (2010) Comparing the folding free-energy landscapes of AB42 variants with different aggregation properties. Proteins 78:2600–2608

    CAS  PubMed  Google Scholar 

  • Narhi L, Wood S, Steavenson S, Jian Y, Wu GM, Anafi D, Kaufman SA, Martin F, Sitney K, Denis P, Louis JC, Wypch J, Biere AL, Citron M (1999) Both familial Parkinson’s disease mutations accelerate ɑ-synuclein aggregation. J Boil Chem 274:9843–9846

    Article  CAS  Google Scholar 

  • Neal S, Nip AM, Zhang H, Wishart DS (2003) Rapid and accurate calculation of protein 1H, 13C, and 15 N chemical shifts. J Biomol NMR 26:215–240

    Article  CAS  PubMed  Google Scholar 

  • Neupane K, Solanki A, Sosova I, Belov M, Woodside MT (2014) Diverse metastable structures formed by small oligomers of α-synuclein probed by force spectroscopy. PLoS ONE 9:e86495. doi:10.1371/journal.pone.0086495

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortega A, Amorós D, de la Torre JG (2011) Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys J 101:892–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawar AP, Dubay K, Zurdo J, Chiti F, Vendruscolo M, Dobson CM (2005) Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J Mol Boil 350:379–392

    Article  CAS  Google Scholar 

  • Schmidt JM, Blümel M, Löhr F, Rüterjans H (1999) Self-consistent 3 J coupling analysis for the joint calibration of Karplus coefficients and evaluation of torsion angles. J Biomol NMR 14:1–12

    Article  CAS  PubMed  Google Scholar 

  • Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA (2000) Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation. Proceeding of the National Academy of Sciences of the United States of America 97:4897–4902

    Article  CAS  Google Scholar 

  • Vilar M, Chou HT, Luhrs T, Maji SK, Riek-Loher D, Verel R, Manning G, Stahlberg H, Riek R (2008) The fold of α-synuclein fibrils. Proceeding of the National Academy of Sciences of the United States of America 105: 8637–8642

  • Wise-Scira O, Aloglu A, Dunn A, Sakallioglu IT, Coskuner O (2013) Structures and free energy landscapes of the wild-type and A30P mutant-type alpha-Synuclein proteins with dynamics. ACS Chem Neurosci 4:486–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu K-P, Weinstock D, Narayanan C, Levy RM, Baum J (2009) Structural reorganization of ɑ-Synuclein at low pH observed by NMR and REMD simulations. J Mol Biol 391:784–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Alberta Innovates Health Solutions under the CRIO program. J. A. T acknowledges funding from NSERC (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack A. Tuszynski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Healey, M.A., Woodside, M.T. & Tuszynski, J.A. Phase transitions and structure analysis in wild-type, A30P, E46K, and A53T mutants of α-synuclein. Eur Biophys J 45, 355–364 (2016). https://doi.org/10.1007/s00249-015-1103-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1103-0

Keywords

Navigation