Skip to main content
Log in

Dividing organelle tracks into Brownian and motor-driven intervals by variational maximization of the Bayesian evidence

  • Methods Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Many organelles and vesicles in live cells move in a start–stop manner when observed for ~10 s by optical microscopy. Changes in velocity and directional persistence of such particles are a potentially rich source of insight into the mechanisms leading to the start and stop states. Unbiased assessment of the most probable number of states, the properties of each state, and the most probable state for the particle at each moment can be accomplished by variational Bayesian methods combined with a hidden Markov model and a Gaussian mixture model. Our track analysis method, “vbTRACK”, applied this combination of methods to particle velocity v or changes in the direction of travel evaluated from simulated tracks and from tracks of peroxisomes in live cells. When tested with numerical data, vbTRACK reliably determined the number of states, the mean and variance of the velocity or the direction of travel for each state, and the most probable state during each frame. When applied to the tracks of peroxisomes in live cells, some tracks separated into two states, one with high velocity and directionality, the other approximately Brownian. Other tracks of particles in live cells separated into several diffusive states with distinct diffusion constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen RD, Weiss DG, Hayden JH et al (1985) Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J Cell Biol 100:1736–1752. doi:10.1083/jcb.100.5.1736

    Article  CAS  PubMed  Google Scholar 

  • Arcizet D, Meier B, Sackmann E et al (2008) Temporal analysis of active and passive transport in living cells. Phys Rev Lett 101:248103. doi:10.1103/PhysRevLett.101.248103

    Article  PubMed  Google Scholar 

  • Attias H (1999) Inferring parameters and structure of latent variable models by variational Bayes. In Laskey KB, Prada H (eds) Uncertainty in artificial intelligence: proceedings of the fifteenth conference on uncertainty in artificial intelligence. Elsevier/Morgan Kaufmann, Burlington, pp 21–30

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, Hidelberg

    Google Scholar 

  • Bronson JE, Fei J, Hofman JM et al (2009) Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys J 97:3196–3205. doi:10.1016/j.bpj.2009.09.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno L, Salierno M, Wetzler DE et al (2011) Mechanical properties of organelles driven y microtubule-dependent molecular motors in living cells. PLoS One 6:e18332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gittes F, Mickey B, Nettleton C, Howard J (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120:923–930

    Article  CAS  PubMed  Google Scholar 

  • Hill DB, Plaza MJ, Bonin K, Holzwarth G (2004) Fast vesicle transport in PC12 neurites: velocities and forces. Eur Biophys J Biophys Lett 33:623–632. doi:10.1007/s00249-004-0403-6

    Article  CAS  Google Scholar 

  • Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221

    Article  CAS  PubMed  Google Scholar 

  • MacKay DJC (1992) Bayesian interpolation. Neural Comput 4:415–427

    Article  Google Scholar 

  • Monnier N, Guo S-M, Mori M et al (2012) Bayesian approach to MSD-based analysis of particle motion in live cells. Biophys J 103:616–626. doi:10.1016/j.bpj.2012.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson F, Linden M, Unoson C, Elf J (2013) Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat Methods 10:265–269. doi:10.1038/NMETH.2367

    Article  CAS  PubMed  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) 7.3.2 Transformation method in general. Numerical recipes, 3rd edn. Cambridge University, Cambridge, pp 362–363

    Google Scholar 

  • Rőding M, Guo M, Weitz D et al (2014) Identifying directional persistence in intracellular particle motion using hidden Markov models. Math Biosci 248:140–145. doi:10.1016/j.mbs.2013.12.008

    Article  PubMed  Google Scholar 

  • Ross JL, Ali MY, Warshaw DM (2008) Cargo transport: molecular motors navigate a complex cytoskeleton. Curr Opin Cell Biol 20:41–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxton MJ (2007) A biological interpretation of transient anomalous subdiffusion. I Qual Model Biophys J 92:1178–1191

    CAS  Google Scholar 

  • Smelser AM, Macosko JC, O’Dell AP et al (2015) Mechanical properties of normal versus cancerous breast cells. Biomech Model Mechanobiol. doi:10.1007/s10237-015-0677-x

    PubMed  Google Scholar 

  • Türkcan S, Alexandrou A, Masson J-B (2012) A Bayesian inference scheme to extract diffusivity and potential fields from confined single-molecule trajectories. Biophys J 102:2288–2298. doi:10.1016/j.bpj.2012.01.063

    Article  PubMed  PubMed Central  Google Scholar 

  • Viterbi AJ (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory 13:260–269. doi:10.1109/TIT.1967.1054010

    Article  Google Scholar 

  • Weihs D, Gilad D, Seon M, Cohen I (2012) Image-based algorithm for analysis of transient trapping in single-particle trajectories. Microfluid Nanofluid 12:337–344. doi:10.1007/s10404-011-0877-3

    Article  Google Scholar 

  • Zajac AL, Goldman YE, Holzbaur ELF, Orsag EM (2013) Local cytoskeletal and organelle interactions impact molecular-motor-driven early endosomal trafficking. Curr Biol 23:1173–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant Number 1106105 (GH). MJM was supported by a Summer Research Grant from Wake Forest University. AMS was supported by National Institutes of Health (T32GM095440) and National Science Foundation graduate fellowship 0907738. We thank J. Bronson, J. Fei, J. Hofman, R. Gonzalez, C. Wiggins, E. Khan, K. Murphy, I. Nabney, and M. Beal for making their programs freely available. We also thank Jed Macosko and Keith Bonin for use of cell culture and video microscopy facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Holzwarth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, M.J., Smelser, A.M. & Holzwarth, G. Dividing organelle tracks into Brownian and motor-driven intervals by variational maximization of the Bayesian evidence. Eur Biophys J 45, 269–277 (2016). https://doi.org/10.1007/s00249-015-1091-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1091-0

Keywords

Navigation