Skip to main content
Log in

A hydrodynamic view of the first-passage folding of Trp-cage miniprotein

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

An Erratum to this article was published on 31 March 2016

Abstract

We study folding of Trp-cage miniprotein in the conditions when the native state of the protein is stable and unfolding events are improbable, which corresponds to physiological conditions. Using molecular dynamics simulations with an implicit solvent model, an ensemble of folding trajectories from unfolded (practically extended) states of the protein to the native state was generated. To get insight into the folding kinetics, the free energy surface and kinetic network projected on this surface were constructed. This, “conventional” analysis of the folding reaction was followed by a recently proposed hydrodynamic description of protein folding (Chekmarev et al. in Phys Rev Lett 100(1):018107, 2008), in which the process of the first-passage folding is viewed as a stationary flow of a folding “fluid” from the unfolded to native state. This approach is conceptually different from the previously used approaches and thus allows an alternative view of the folding dynamics and kinetics of Trp-cage, the conclusions about which are very diverse. In agreement with most previous studies, we observed two characteristic folding pathways: in one pathway (I), the collapse of the hydrophobic core precedes the formation of the \(\alpha\)-helix, and in the other pathway (II), these events occur in the reverse order. We found that although pathway II is complicated by a repeated partial protein unfolding, it contributes to the total folding flow as little as ≈10 %, so that the folding kinetics remain essentially single-exponential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abaskharon RM, Culik RM, Woolley GA, Gai F (2015) Tuning the attempt frequency of protein folding dynamics via transition-state rigidification: application to Trp-cage. J Phys Chem Lett 6(3):521–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed Z, Beta IA, Mikhonin AV, Asher SA (2005) UV-resonance Raman thermal unfolding study of Trp-cage shows that it is not a simple two-state miniprotein. J Am Chem Soc 127(31):10943–10950

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR, Brooks CL, MacKerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne A, Williams DV, Barua B, Hagen SJ, Kier BL, Andersen NH (2014) Folding dynamics and pathways of the Trp-cage miniproteins. Biochemistry 53(38):6011–6021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chekmarev SF (2013) Protein folding: complex potential for the driving force in a two-dimensional space of collective variables. J Chem Phys 139(14):145103

    Article  PubMed  Google Scholar 

  • Chekmarev SF (2015a) Equilibration of protein states: a time dependent free-energy disconnectivity graph. J Phys Chem B 119(26):8340–8348

  • Chekmarev SF (2015b) Protein folding as a complex reaction: a two-component potential for the driving force of folding and its variation with folding scenario. PLoS One 10(4):0121640

  • Chekmarev SF, Krivov SV, Karplus M (2005) Folding time distributions as an approach to protein folding kinetics. J Phys Chem B 109(11):5312–5330

    Article  CAS  PubMed  Google Scholar 

  • Chekmarev SF, Palyanov AY, Karplus M (2008) Hydrodynamic description of protein folding. Phys Rev Lett 100(1):018107

    Article  PubMed  Google Scholar 

  • Chowdhury S, Lee MC, Duan Y (2004) Characterizing the rate-limiting step of Trp-cage folding by all-atom molecular dynamics simulations. J Phys Chem B 108(36):13855–13865

    Article  CAS  Google Scholar 

  • Culik RM, Serrano AL, Bunagan MR, Gai F (2011) Achieving secondary structural resolution in kinetic measurements of protein folding: a case study of the folding mechanism of Trp-cage. Angew Chem Int Ed 123(46):11076–11079

    Article  Google Scholar 

  • Day R, Paschek D, Garcia AE (2010) Microsecond simulations of the folding/unfolding thermodynamics of the Trp-cage miniprotein. Proteins: Struct Funct Bioinform 78(8):1889–1899

    CAS  Google Scholar 

  • Deng NJ, Dai W, Levy RM (2013) How kinetics within the unfolded state affects protein folding: an analysis based on Markov state models and an ultra-long MD trajectory. J Phys Chem B 117(42):12787–12799

    Article  CAS  PubMed  Google Scholar 

  • Du W, Bolhuis PG (2014) Sampling the equilibrium kinetic network of Trp-cage in explicit solvent. J Chem Phys 140(19):195102

    Article  PubMed  Google Scholar 

  • Eaton WA, Muñoz V, Hagen SJ, Jas GS, Lapidus LJ, Henry ER, Hofrichter J (2000) Fast kinetics and mechanisms in protein folding. Annu Rev Biophys Biomol Struct 29(1):327–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrara P, Apostolakis J, Caflisch A (2000) Thermodynamics and kinetics of folding of two model peptides investigated by molecular dynamics simulations. J Phys Chem B 104(20):5000–5010

    Article  CAS  Google Scholar 

  • Ferrara P, Apostolakis J, Caflisch A (2002) Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins: Struct Funct Bioinform 46(1):24–33

    Article  CAS  Google Scholar 

  • Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97(458):611–631

    Article  Google Scholar 

  • Halabis A, Zmudzinska W, Liwo A, Oldziej S (2012) Conformational dynamics of the Trp-cage miniprotein at its folding temperature. J Phys Chem B 116(23):6898–6907

    Article  CAS  PubMed  Google Scholar 

  • Han W, Schulten K (2013) Characterization of folding mechanisms of Trp-cage and WW-domain by network analysis of simulations with a hybrid-resolution model. J Phys Chem B 117(42):13367–13377

    Article  CAS  PubMed  Google Scholar 

  • Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4(1):17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolliffe I (2002) Principal component analysis. Springer, New York

    Google Scholar 

  • Juraszek J, Bolhuis P (2006) Sampling the multiple folding mechanisms of Trp-cage in explicit solvent. Proc Natl Acad Sci USA 103(43):15859–15864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juraszek J, Saladino G, van Erp T, Gervasio F (2013) Efficient numerical reconstruction of protein folding kinetics with partial path sampling and pathlike variables. Phys Rev Lett 110(10):108106

    Article  CAS  PubMed  Google Scholar 

  • Kalgin IV, Chekmarev SF (2011) Turbulent phenomena in protein folding. Phys Rev E 83(1):011920

    Article  Google Scholar 

  • Kalgin IV, Chekmarev SF (2015) Folding of a \(\beta\)-sheet miniprotein: probability fluxes, streamlines, and the potential for the driving force. J Phys Chem B 119(4):1380–1387

    Article  CAS  PubMed  Google Scholar 

  • Kalgin IV, Karplus M, Chekmarev SF (2009) Folding of a SH3 domain: standard and “hydrodynamic” analyses. J Phys Chem B 113(38):12759–12772

    Article  CAS  PubMed  Google Scholar 

  • Kalgin IV, Chekmarev SF, Karplus M (2014) First passage analysis of the folding of a \(\beta\)-sheet miniprotein: Is it more realistic than the standard equilibrium approach? J Phys Chem B 118(16):4287–4299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan S, Zacharias M (2014) Role of tryptophan side chain dynamics on the Trp-cage mini-protein folding studied by molecular dynamics simulations. PloS One 9(2):88383

    Article  Google Scholar 

  • Kim SB, Dsilva CJ, Kevrekidis IG, Debenedetti PG (2015) Systematic characterization of protein folding pathways using diffusion maps: application to Trp-cage miniprotein. J Chem Phys 142(8):085101

    Article  PubMed  Google Scholar 

  • Lai Z, Preketes NK, Mukamel S, Wang J (2013) Monitoring the folding of Trp-cage peptide by two-dimensional infrared (2dir) spectroscopy. J Phys Chem B 117(16):4661–4669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landau L, Lifshitz E (1987) Fluid mechanics. Pergamon, New York

    Google Scholar 

  • Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold. Science 334(6055):517–520

    Article  CAS  PubMed  Google Scholar 

  • Linhananta A, Boer J, MacKay I (2005) The equilibrium properties and folding kinetics of an all-atom go model of the Trp-cage. J Chem Phys 122(11):114901

    Article  PubMed  Google Scholar 

  • Marinelli F (2013) Following easy slope paths on a free energy landscape: the case study of the Trp-cage folding mechanism. Biophys J 105(5):1236–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinelli F, Pietrucci F, Laio A, Piana S (2009) A kinetic model of Trp-cage folding from multiple biased molecular dynamics simulations. PLoS Comput Biol 5(8):1000452

    Article  Google Scholar 

  • Marino KA, Bolhuis PG (2012) Confinement-induced states in the folding landscape of the Trp-cage miniprotein. J Phys Chem B 116(39):11872–11880

    Article  CAS  PubMed  Google Scholar 

  • Meuzelaar H, Marino KA, Huerta-Viga A, Panman MR, Smeenk LE, Kettelarij AJ, van Maarseveen JH, Timmerman P, Bolhuis PG, Woutersen S (2013) Folding dynamics of the Trp-cage miniprotein: evidence for a native-like intermediate from combined time-resolved vibrational spectroscopy and molecular dynamics simulations. J Phys Chem B 117(39):11490–11501

    Article  CAS  PubMed  Google Scholar 

  • Mok KH, Kuhn LT, Goez M, Day IJ, Lin JC, Andersen NH, Hore P (2007) A pre-existing hydrophobic collapse in the unfolded state of an ultrafast folding protein. Nature 447(7140):106–109

    Article  CAS  PubMed  Google Scholar 

  • Mou L, Jia X, Gao Y, Li Y, Zhang JZ, Mei Y (2014) Folding simulation of Trp-cage utilizing a new AMBER compatible force field with coupled main chain torsions. J Chem Theory Comput 13(04):1450026

    Article  Google Scholar 

  • Neidigh JW, Fesinmeyer RM, Andersen NH (2002) Designing a 20-residue protein. Nat Struct Mol Biol 9(6):425–430

    Article  CAS  Google Scholar 

  • Neria E, Fischer S, Karplus M (1996) Simulation of activation free energies in molecular systems. J Chem Phys 105(5):1902–1921

    Article  CAS  Google Scholar 

  • Neuweiler H, Doose S, Sauer M (2005) A microscopic view of miniprotein folding: Enhanced folding efficiency through formation of an intermediate. Proc Natl Acad Sci USA 102(46):16650–16655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orsi M, Ding W, Palaiokostas M (2014) Direct mixing of atomistic solutes and coarse-grained water. J Chem Theor Comput 10(10):4684–4693

    Article  CAS  Google Scholar 

  • Paschek D, Hempel S, García AE (2008) Computing the stability diagram of the Trp-cage miniprotein. Proc Natl Acad Sci USA 105(46):17754–17759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu L, Pabit SA, Roitberg AE, Hagen SJ (2002) Smaller and faster: The 20-residue Trp-cage protein folds in 4 μs. J Am Chem Soc 124(44):12952–12953

    Article  CAS  PubMed  Google Scholar 

  • Rovó P, Farkas V, Hegyi O, Szolomájer-Csikós O, Tóth GK, Perczel A (2011) Cooperativity network of Trp-cage miniproteins: probing salt-bridges. J Pept Sci 17(9):610–619

    Article  PubMed  Google Scholar 

  • Rovó P, Stráner P, Láng A, Bartha I, Huszár K, Nyitray L, Perczel A (2013) Structural insights into the Trp-cage folding intermediate formation. Chem Eur J 19(8):2628–2640

    Article  PubMed  Google Scholar 

  • Sabelko J, Ervin J, Gruebele M (1999) Observation of strange kinetics in protein folding. Proc Natl Acad Sci USA 96(11):6031–6036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeber M, Cecchini M, Rao F, Settanni G, Caflisch A (2007) WORDOM: a program for efficient analysis of molecular dynamics simulations. Bioinformatics 23(19):2625–2627

    Article  CAS  PubMed  Google Scholar 

  • Shao Q, Shi J, Zhu W (2012) Enhanced sampling molecular dynamics simulation captures experimentally suggested intermediate and unfolded states in the folding pathway of Trp-cage miniprotein. J Chem Phys 137(12):125103

    Article  PubMed  Google Scholar 

  • Snow CD, Zagrovic B, Pande VS (2002) The Trp-cage: folding kinetics and unfolded state topology via molecular dynamics simulations. J Am Chem Soc 124(49):14548–14549

    Article  CAS  PubMed  Google Scholar 

  • Sobolev S (1964) Partial differential equations of mathematical physics. Pergamon Press, Oxford

    Google Scholar 

  • Streicher WW, Makhatadze GI (2007) Unfolding thermodynamics of Trp-cage, a 20 residue miniprotein, studied by differential scanning calorimetry and circular dichroism spectroscopy. Biochemistry 46(10):2876–2880

    Article  CAS  PubMed  Google Scholar 

  • Van Kampen NG (1992) Stochastic processes in physics and chemistry, vol 1. North-Holland, Amsterdam

    Google Scholar 

  • Weber HJ, Arfken GB (2004) Essential mathematical methods for physicists. Elsevier, San Diego

    Google Scholar 

  • Zheng W, Gallicchio E, Deng N, Andrec M, Levy RM (2011) Kinetic network study of the diversity and temperature dependence of Trp-cage folding pathways: combining transition path theory with stochastic simulations. J Phys Chem B 115(6):1512–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou R (2003) Trp-cage: folding free energy landscape in explicit water. Proc Natl Acad Sci USA 100(23):13280–13285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was performed under a grant from the Russian Science Foundation (No. 14-14-00325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei F. Chekmarev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andryushchenko, V.A., Chekmarev, S.F. A hydrodynamic view of the first-passage folding of Trp-cage miniprotein. Eur Biophys J 45, 229–243 (2016). https://doi.org/10.1007/s00249-015-1089-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1089-7

Keywords

Navigation