Skip to main content
Log in

Binding of glutathione and melatonin to pepsin occurs via different binding mechanisms

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Glutathione is a hydrophilic antioxidant and melatonin is a hydrophobic antioxidant, thus, the binding mechanism of the two antioxidants interacting with protease may be different. In this study, binding of glutathione and melatonin to pepsin has been studied using isothermal titration calorimetry (ITC), equilibrium microdialysis, UV–Vis absorption spectroscopy, circular dichroism (CD) spectroscopy, and molecular modeling. Thermodynamic investigations reveal that the binding of glutathione/melatonin to pepsin is driven by favorable enthalpy and unfavorable entropy, and the major driving forces are hydrogen bond and van der Waals force. ITC, equilibrium microdialysis, and molecular modeling reveal that the binding of glutathione to pepsin is characterized by a high number of binding sites. For melatonin, one molecule of melatonin combines with one molecule of pepsin. These results confirm that glutathione/melatonin interact with pepsin through two different binding mechanisms. In addition, the UV–Vis absorption and CD experiments indicate that glutathione and melatonin may induce conformational and microenvironmental changes of pepsin. The conformational changes of pepsin may affect its biological function as protease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersson LO, Rehnstrom A, Eaker DL (1971) Studies on “nonspecific” binding, the nature of the binding of fluorescein to bovine serum albumin. Eur J Biochem 20:371–380

    Article  CAS  PubMed  Google Scholar 

  • Bains G, Freire E (1991) Calorimetric determination of cooperative interactions in high affinity binding processes. Anal Biochem 192:203–206

    Article  CAS  PubMed  Google Scholar 

  • Ballatori N, Krance SM, Marchan R, Hammond CL (2009) Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol Asp Med 30:13–28

    Article  CAS  Google Scholar 

  • Campos LA, Sancho J (2003) The active site of pepsin is formed in the intermediate conformation dominant at mildly acidic pH. FEBS Lett 538:89–95

    Article  CAS  PubMed  Google Scholar 

  • Chai J, Xu Q, Dai J, Liu R (2013) Investigation on potential enzyme toxicity of clenbuterol to trypsin. Spectrochim Acta A 105:200–206

    Article  CAS  Google Scholar 

  • Chakraborty T, Chakraborty I, Moulik SP, Ghosh S (2007) Physicochemical studies on pepsin–CTAB interaction: energetics and structural changes. J Phys Chem B 111:2736–2746

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z (2012) Studies on the interaction between scopoletin and two serum albumins by spectroscopic methods. J Lumin 132:2719–2729

    Article  CAS  Google Scholar 

  • Chi Z, Liu R (2011) Phenotypic characterization of the binding of tetracycline to human serum albumin. Biomacromolecules 12:203–209

    Article  CAS  PubMed  Google Scholar 

  • Chi Z, Liu R, Zhang H (2010) Noncovalent interaction of oxytetracycline with the enzyme trypsin. Biomacromolecules 11:2454–2459

    Article  CAS  PubMed  Google Scholar 

  • Deaville ER, Green RJ, Mueller-Harvey I, Willoughby I, Frazier RA (2007) Hydrolyzable tannin structures influence relative globular and random coil protein binding strengths. J Agric Food Chem 55:4554–4561

    Article  CAS  PubMed  Google Scholar 

  • Dobreva MA, Frazier RA, Mueller-Harvey I, Clifton LA, Gea A, Green RJ (2011) Binding of pentagalloyl glucose to two globular proteins occurs via multiple surface sites. Biomacromolecules 12:710–715

    Article  CAS  PubMed  Google Scholar 

  • Esfandiar A, Akhavan O, Irajizad A (2011) Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J Mater Chem 21:10907–10914

    Article  CAS  Google Scholar 

  • Freire E, Mayorgal OL, Straume M (1990) Isothermal titration calorimetry. Anal Chem 62:950A–958A

    Article  CAS  Google Scholar 

  • Gekko K, Yonehara R, Sakurada Y, Matsuo K (2005) Structure analyses of biomolecules using a synchrotron radiation circular dichroism spectrophotometer. J Electron Spectrosc 144–147:295–297

    Article  Google Scholar 

  • Gole A, Dash C, Rao M, Sastry M (2000) Encapsulation and biocatalytic activity of the enzyme pepsin in fatty lipid films by selective electrostatic interactions. Chem Commun 16:297–298

    Article  Google Scholar 

  • Gonçalves R, Mateus N, Freitas VD (2011) Influence of carbohydrates on the interaction of procyanidin B3 with trypsin. J Agric Food Chem 59:11794–11802

    Article  PubMed  Google Scholar 

  • Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He Q, Lv Y, Yao K (2006) Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase. Food Chem 101:1178–1182

    Article  Google Scholar 

  • Jin KS, Rho Y, Kim J, Kim H, Kim IJ, Ree M (2008) Synchrotron small-angle X-ray scattering studies of the structure of porcine pepsin under various pH conditions. J Phys Chem B 112:15821–15827

    Article  CAS  PubMed  Google Scholar 

  • Johns NP, Johns J, Porasuphatana S, Plaimee P, Sae-Teaw M (2013) Dietary intake of melatonin from tropical fruit altered urinary excretion of 6-sulfatoxymelatonin in healthy volunteers. J Agric Food Chem 61:913–919

    Article  CAS  PubMed  Google Scholar 

  • Kaya Y, Sarıkcıoğlu L, Aslan M, Kencebay C, Demir N, Derin N, Angelov DN, Yıldırım FB (2013) Comparison of the beneficial effect of melatonin on recovery after cut and crush sciatic nerve injury: a combined study using functional, electrophysiological, biochemical, and electron microscopic analyses. Childs Nerv Syst 29:389–401

    Article  PubMed  Google Scholar 

  • Koo SH, Lee JS, Kim GH, Lee HG (2011) Preparation, characteristics, and stability of glutathione-loaded nanoparticles. J Agric Food Chem 59:11264–11269

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova IM, Sulatskayal AI, Povaroval OI, Turoverov KK (2012a) Reevaluation of ANS binding to human and bovine serum albumins: key role of equilibrium microdialysis in ligand–receptor binding characterization. PLoS ONE 7:e40845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuznetsova IM, Sulatskaya AI, Uversky VN, Turoverov KK (2012b) A new trend in the experimental methodology for the analysis of the thioflavin T binding to amyloid fibrils. Mol Neurobiol 45:88–498

    Google Scholar 

  • Li X, Wang S (2015) Binding of glutathione and melatonin to human serum albumin: a comparative study. Colloids Surf B 125:96–103

    Article  CAS  Google Scholar 

  • Li X, Yang Z (2015) Dissection of the binding of l-ascorbic acid to trypsin and pepsin using isothermal titration calorimetry, equilibrium microdialysis and spectrofluorimetry. RSC Adv 5:35487–35496

    Article  CAS  Google Scholar 

  • Li H, Pu J, Wang Y, Liu C, Yu J, Li T, Wang R (2013) Comparative study of the binding of trypsin with bifendate and analogs by spectrofluorimetry. Spectrochim Acta A 115:1–11

    Article  Google Scholar 

  • Lopes P, Kataky R (2012) Chiral interactions of the drug propranolol and α1-acid-glycoprotein at a micro liquid–liquid interface. Anal Chem 84:2299–2304

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Chen DJ, Wang GK, Yan CL (2009) Study of interactions of bovine serum albumin in aqueous (NH4)2SO4 solution at 25 °C by osmotic pressure measurements. J Chem Eng Data 54:1975–1980

    Article  CAS  Google Scholar 

  • Matsuo K, Yonehara R, Gekko K (2004) Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J Biochem 135:405–411

    Article  CAS  PubMed  Google Scholar 

  • Matsuo K, Sakurada Y, Yonehara R, Kataoka M, Gekko K (2007) Secondary-structure analysis of denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy. Biophys J 92:4088–4096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mu Y, Lin J, Liu R (2011) Interaction of sodium benzoate with trypsin by spectroscopic techniques. Spectrochim Acta A 83:130–135

    Article  CAS  Google Scholar 

  • Nielsen AD, Borch K, Westh P (2000) Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin. Biochim Biophys Acta 1479:321–331

    Article  CAS  PubMed  Google Scholar 

  • Noh HB, Chandra P, Moon JO, Shim YB (2012) In vivo detection of glutathione disulfide and oxidative stress monitoring using a biosensor. Biomaterials 33:2600–2607

    Article  CAS  PubMed  Google Scholar 

  • Pastore A, Federici G, Bertini E, Piemonte F (2003) Analysis of glutathione: implication in redox and detoxification. Clin Chem Acta 333:19–39

    Article  CAS  Google Scholar 

  • Ranjbar B, Gill P (2009) Circular dichroism techniques: biomolecular and nanostructural analyses—a review. Chem Biol Drug Des 74:101–120

    Article  CAS  PubMed  Google Scholar 

  • Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Xu H, Huang F, Li Y, Xiao H, Yang Z, Hu Z, He Z, Zeng Z, Li Y (2015) Investigation on interaction between Ligupurpuroside A and pepsin by spectroscopic and docking methods. Spectrochim Acta A 135:256–263

    Article  CAS  Google Scholar 

  • Spelzini D, Peleteiro J, Picó G, Farruggia B (2008) Polyethyleneglycol–pepsin interaction and its relationship with protein partitioning in aqueous two-phase systems. Colloids Surf B 67:151–156

    Article  CAS  Google Scholar 

  • Sulatskaya AI, Kuznetsova IM, Turoverov KK (2011) Interaction of thioflavin T with amyloid fibrils: stoichiometry and affinity of dye binding, absorption spectra of bound dye. J Phys Chem B 115:11519–11524

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Terada T, Tanaka A (2003) A quantitative analysis and chemical approach for the reduction of nonspecific binding proteins on affinity resins. Bioconjugate Chem 14:1222–1230

    Article  CAS  Google Scholar 

  • Wang Q, Guan Y, Yang M (2012) Application of superparamagnetic microspheres for affinity adsorption and purification of glutathione. J Magn Magn Mater 324:3300–3305

    Article  CAS  Google Scholar 

  • Wang G, Yan C, Lu Y (2013a) Exploring DNA binding properties and biological activities of dihydropyrimidinones derivatives. Colloids Surf B 106:28–36

    Article  CAS  Google Scholar 

  • Wang R, Xie Y, Zhang Y, Kang X, Wang X, Ge B, Chang J (2013b) Comparative study of the binding of pepsin to four alkaloids by spectrofluorimetry. Spectrochim Acta A 108:62–74

    Article  Google Scholar 

  • Zhang HM, Wang YQ, Zhou QH (2010) Fluorimetric study of interaction of benzidine with trypsin. J Lumin 130:781–786

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21173071, 21303043), the Key Research Project of Colleges and Universities of Henan Province (15A150004), the Doctoral Startup Fund of Xinxiang Medical University (505078) and the Foundation for Fostering of Xinxiang Medical University (2014QN122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangrong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ni, T. Binding of glutathione and melatonin to pepsin occurs via different binding mechanisms. Eur Biophys J 45, 165–174 (2016). https://doi.org/10.1007/s00249-015-1085-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1085-y

Keywords

Navigation