Skip to main content
Log in

Synthesis and characterization of MFe2O4 (M = Co, Ni, Mn) magnetic nanoparticles for modulation of angiogenesis in chick chorioallantoic membrane (CAM)

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

In this study, we report the synthesis and characterization studies of amine-functionalized MFe2O4 (Co, Ni, Mn) nanoparticles. The synthesis process was accomplished by refluxing metal chloride precursors in ethylene glycol in the presence of sodium acetate and ethanolamine. The average crystallite sizes of the synthesized particles are found to be in the range of 8–10 nm. The synthesized particles are characterized using X-ray diffraction, Brunauer–Emmett–Teller technique, FTIR, dynamic light scattering, Raman and UV–visible spectroscopy for crystal structure, average size, surface area, pore diameter and hydrodynamic diameter, phase and functional group determination. The surface morphology and elemental composition were studied by scanning electron microscope and X-ray fluorescence respectively. Magnetic behavior up to fields of 3 T at room temperature measured in Quantum Design Physical Property Measurement System (QD PPMS) magnetometer showed the superparamagnetic behavior of these particles. Modulation of angiogenesis by the nanoparticles was studied in a chick embryo chorioallantoic membrane model by analysis of blood vessel development and effect on hemoglobin level using imaging and colorimetric methods. An enhancement in the angiogenesis compared to the saline control was observed for all the ferrite nanoparticles with a relatively optimal activity in case of CoFe2O4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bae KH, Kim YB, Lee Y, Hwang JY, Park HW, Park TG (2010) Bioinspired synthesis and characterization of gadolinium labeled magnetite nanoparticles for dual contrast T1- and T2-weighted magnetic resonance imaging. Bioconjugate Chem 21:505–512

    Article  CAS  Google Scholar 

  • Baharara J, Namvar F, Mousavi M, Ramezani T, Mohamad R (2014) Synthesis of amino-group functionalized Superparamagnetic iron oxide nanoparticles and applications as biomedical labeling probes. Molecules 19:13498–13508

    Article  PubMed  Google Scholar 

  • Bartczak D, Muskens OL, Sanchez-Elsner T, Kanaras AG, Millar TM (2013) Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles. ACS Nano 7(6):5628–5636

    Article  CAS  PubMed  Google Scholar 

  • Battle X, Labarta A (2002) Finite-size effects in fine particles: magnetic and transport properties. J Phys D 35:R15

    Article  Google Scholar 

  • Bohara RA, Thorat ND, Yadav HM, Pawar SH (2014) One step synthesis of uniform and biocompatible amine functionalized cobalt ferrite nanoparticles: a potential carrier for biomedical applications. New J Chem 38:2979

    Article  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other disease. Nature 407:249–257

    Article  CAS  PubMed  Google Scholar 

  • Castiglioni S, Caspani C, Cazzaniga A, Maier JA (2014) Short and long term effects of silver nanoparticles on human microvascular endothelial cells. World J Biol Chem 5(4):457–464

    Article  PubMed Central  PubMed  Google Scholar 

  • Cullity BD (1972) Introduction of magnetic materials. Addison Wesley, New York, p 190

  • Deshmukh A, Radha S, Khan Y, Tilak P (2011) Ferrite nanoparticles in pharmacological modulation of angiogenesis. AIP Conf Proc 1349:437

    Article  CAS  Google Scholar 

  • Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in small particles systems. Adv Chem Phys 98:283–494

    CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  CAS  PubMed  Google Scholar 

  • International Committee for Standardization in Haematology (1967) Recommendation for hemoglobinometry in human blood. Br J Haematol 13:71–75

    Article  Google Scholar 

  • Jonsson PE (2004) Superparamagnetism and spin glass dynamics of interacting magnetic nanoparticle systems. Adv Chem Phys 128:191–248

    Google Scholar 

  • Kemp MM, Kumar A, Mousa S, Dyskin E, Yalcin M, Ajayan P, Linhardt RJ, Mousa SA (2009) Gold and Silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology 20:1–7

    Article  Google Scholar 

  • Kurikka VPM, Shafi YK, Gedanken A, Prozorov R, Lendvai J, Felner I (1999) Sonochemical preparation of nanosized amorphous NiFe2O4 particles. J Phys Chem B 101:6409

    Google Scholar 

  • Lima RD, Oliveira JD, Ludescher A, Molina MM, Itri R, Saebra AB, Haddad PS (2013) Iron oxide nanoparticles show no toxicity in the comet assay in lymphocytes: a promising vehicle as a nitric oxide releasing nanocarriers in biomedical applications. J Phys Conf Series 429:012034. doi:10.1088/1742-6596/429/1/012034

    Article  Google Scholar 

  • Ma M, Zhan Y, Shen Y, Xia X, Zhang S, Liu Z (2011) Synthesis of amino-group functionalized Superparamagnetic iron oxide nanoparticles and applications as biomedical labeling probes. J Nanopart Res 13:3249–3257

    Article  CAS  Google Scholar 

  • Mishra L, Mishra A, Mukherjee S (2014). In: Proceedings of 7th IRF international conference, Pune, India. ISBN: 978-93-84209-09-4

  • Mohan CV, Seeger M, Kronmuller H, Murugaraj P, Maier J (1998) Critical-behavior near the ferromagnetic-paramagnetic phase-transition in La0.8Sr0.2Mn0.3. J Magn Magn Mater 183(3):348–355

    Article  CAS  Google Scholar 

  • Mohapatra S, Rout SR, Panda AB (2011) Colloids and surfaces A: physicochem. Eng Aspects 384:453–460

    Article  CAS  Google Scholar 

  • Murugesan S, Mousa SA, Connor LJ, Lincoln DW, Linhardt RJ (2007) Carbon inhibits vascular endothelial growth factor and fibroblast growth factor promoted angiogenesis. FEBS Lett 581:1157–1160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nooris Momin, Aparna Deshmukh, Radha S (2015) Synthesis and characterization of the CoFe2O4 and NiFe2O4 magnetic nanoparticles for various biomedical applications: cell viability and cell death evaluations. J NanoRes 34:1–8 ISBN–13: 978-3-03835-879-4

  • Redl FX, Black CT, Papaefthymiou GC, Sandstorm RL, Yin M, Zeng H, Murray CB, O’Brien SP (2004) Magnetic, electronic and structural characterization of nonstoichiometric iron oxide at the nanoscale. J Am Chem 126:14583–14599

    Article  CAS  Google Scholar 

  • Risau W, Flamme I (1995) “Vasculogenesis”. Annu Rev Cell Dev Biol 11:73–91

  • Shafi KVPM, Gedanken A, Prozorov R, Balogh J (1998) Sonochemical preparation and size dependent properties of nanostructured CoFe2O4 particles. Chem Mater 10:3445

  • Tietz NW (1976) Fundamentals of clinical chemistry, 2nd edn. W.B Saunders and Co., Philadelphia

    Google Scholar 

  • VeenaGopalan E, Malini KA, Saravanan S, Sakthi Kumar D, Anantharaman MR (2008) Evidence for polaron conduction in nanostructured manganese ferrite. J Phys D Appl Phys 41:185005/1–185005/9

  • Walters MI (1968) An evaluation of hemoglobin concentrations obtained with frozen altered drabkin’s reagents. Clin Chem 14:682–691

    CAS  PubMed  Google Scholar 

  • Wang L, Ren J, Wang Y, Liu X, Wang Y (2010) Controlled synthesis of magnetic spinel-type nickel ferrite nanoparticles by the interface reaction and hydrothermal crystallization. J Alloys Compd 490:656

    Article  CAS  Google Scholar 

  • Yang H, Zhang C, Shi X, Hu H, Du X, Fang Y, Ma Y, Wu H, Yang S (2010) Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31:3667–3673

    Article  CAS  PubMed  Google Scholar 

  • Zalite I, Heidemane G, Kodols M, Grabis J, Maiorov M (2012) The synthesis, characterization and sintering of nickel and cobalt ferrite nanopowders. Mate Sci ISNN 1332-4508. 18(1):3–7. doi:10.5755/j01.ms.18.1.1332

  • Zhou ZH, Xue JM, Wang J, Chan HSO, Yu T, Shen ZX (2002) NiFe2O4 nanoparticles formed in situ in silica matrix by mechanical activation. J App Phys 91:6015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Head, Prof A. Misra and the staff of the Department of Physics, University of Mumbai, UGC-DAE Consortium for DAE facilities, Mumbai for PPMS and DLS facility, Prof. D.C. Kothari from the Centre of Nanoscience and Nanotechnology, University of Mumbai for SEM facility. One of the authors (NM) acknowledges UGC, New Delhi, for Maulana Azad National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Radha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nooris, M., Aparna, D. & Radha, S. Synthesis and characterization of MFe2O4 (M = Co, Ni, Mn) magnetic nanoparticles for modulation of angiogenesis in chick chorioallantoic membrane (CAM). Eur Biophys J 45, 139–148 (2016). https://doi.org/10.1007/s00249-015-1083-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1083-0

Keywords

Navigation