Skip to main content
Log in

Magnetic nanoparticles for “smart liposomes”

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Liposomal drug delivery systems (LDDSs) are promising tools used for the treatment of diseases where highly toxic pharmacological agents are administered. Currently, destabilising LDDSs by a specific stimulus at a target site remains a major challenge. The bacterial mechanosensitive channel of large conductance (MscL) presents an excellent candidate biomolecule that could be employed as a remotely controlled pore-forming nanovalve for triggered drug release from LDDSs. In this study, we developed superparamagnetic nanoparticles for activation of the MscL nanovalves by magnetic field. Synthesised CoFe2O4 nanoparticles with the radius less than 10 nm were labelled by SH groups for attachment to MscL. Activation of MscL by magnetic field with the nanoparticles attached was examined by the patch clamp technique showing that the number of activated channels under ramp pressure increased upon application of the magnetic field. In addition, we have not observed any cytotoxicity of the nanoparticles in human cultured cells. Our study suggests the possibility of using magnetic nanoparticles as a specific trigger for activation of MscL nanovalves for drug release in LDDSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ajouz B, Berrier C, Besnard M, Martinac B, Ghazi A (2000) Contributions of the different extramembranous domains of the mechanosensitive ion channel MscL to its response to membrane tension. J Biol Chem 275(2):1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Ayyappan S, Baldev R (2009) Effect of digestion time on size and magnetic properties of spinel CoFe2O4 nanoparticles. J Phys Chem C 113:590–596

    Article  CAS  Google Scholar 

  • Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220–2226

    Article  CAS  PubMed  Google Scholar 

  • Corry B et al (2010) An improved open-channel structure of MscL determined from FRET confocal microscopy and simulation. J Gen Physiol 136:483–494. doi:10.1085/jgp.200910376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cruickshank CC, Minchin RF, Le Dain AC, Martinac B (1997) Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys J 73:1925–1931. doi:10.1016/S0006-3495(97)78223-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delcour AH, Martinac B, Adler J, Kung C (1989) A modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J 56:631–636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guilherme VM, Jacintho, Brolo AG, Paola C, Suarez PAZ, Rubim JC (2009) Structural investigation of MFe2O4 (M) Fe, Co) magnetic fluids. J Phys Chem 113:7684–7691

    Google Scholar 

  • Häse CC, Le Dain AC, Martinac B (1995) Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J Biol Chem 270:18329–18334

    Article  PubMed  Google Scholar 

  • Janoff AS (1999). Marcel Dekker, New York

  • Kim BH et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631. doi:10.1021/ja203340u

    Article  CAS  PubMed  Google Scholar 

  • Koçer A (2007) A remote controlled valve in liposomes for triggered liposomal release. J Liposome Res 17:219–225. doi:10.1080/08982100701528203

    Article  PubMed  Google Scholar 

  • Lee JG, Kim CS (1998) Growth of ultra-fine cobalt ferrite particles by a sol–gel method and their magnetic properties. J Mater Sci 3:3965–3968

    Article  Google Scholar 

  • Levina N et al (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737. doi:10.1093/emboj/18.7.1730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martinac B (2011) Bacterial mechanosensitive channels as a paradigm for mechanosensory transduction. Cell Physiol Biochem 28:1051–1060. doi:10.1159/000335842

    Article  CAS  PubMed  Google Scholar 

  • Nomura T et al (2012) Differential effects of lipids and lyso-lipids on the mechanosensitivity of the mechanosensitive channels MscL and MscS. Proc Natl Acad Sci USA 109:8770–8775. doi:10.1073/pnas.1200051109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ozturk N, Semiha Bahceli CC (2005) FT-IR spectroscopic study of 1,5-Pentanedithiol and 1,6-Hexanedithiol adsorbed on NaA, CaA and NaY Zeolites. Z. Naturforsch 60:633–636

    CAS  Google Scholar 

  • Pankhurst QA, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181

    Article  CAS  Google Scholar 

  • Pankhurst QA, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42:224001

    Article  Google Scholar 

  • Pauline SPAP (2012) Size and shape control evaluation of cobalt (Co) and cobalt ferrite (CoFe2O4) magnetic nanoparticles. Arch Phys Res 3:78–83

    CAS  Google Scholar 

  • Perozo E, Kloda A, Cortes DM, Martinac B (2001) Site-directed spin-labeling analysis of reconstituted Mscl in the closed state. J Gen Physiol 118:193–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perozo E, Kloda A, Cortes DM, Martinac B (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9:696–703. doi:10.1038/nsb827

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Wang D, Wang Y, Chen Z, Ren L, Zhou X, Ke X, Chena M, Yang A (2013) One-step synthesis of monodisperse, water-soluble ultra-small Fe3O4 nanoparticles for potential bioapplication. Nanoscale 5:2133–2141

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265. doi:10.1016/j.addr.2008.03.018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun QC, Cao J, Tremel W, Musfeldt JL (2012) Spectroscopic signature of the superparamagnetic transition and surface spin disorder in CoFe2O4 nanoparticles. ACS Nano 6:4876–4883

    Article  CAS  PubMed  Google Scholar 

  • Suntres ZE (2011) Liposomal antioxidants for protection against oxidant-induced damage. J Toxicol 2011:152474. doi:10.1155/2011/152474

    Article  PubMed Central  PubMed  Google Scholar 

  • Svenson S. Ed. (2004). American Chemical Society in ACS Symposium Series 879, Washington

  • Teng J, Loukin S, Anishkin A, Kung C (2015) The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflugers Arch 467:27–37. doi:10.1007/s00424-014-1530-2

    Article  CAS  PubMed  Google Scholar 

  • van den Bogaart G, Krasnikov V, Poolman B (2007) Dual-color fluorescence-burst analysis to probe protein efflux through the mechanosensitive channel MscL. Biophys J 92:1233–1240. doi:10.1529/biophysj.106.088708

    Article  PubMed Central  PubMed  Google Scholar 

  • Wahajuddin Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed 7:3445–3471. doi:10.2147/IJN.S30320

    Article  Google Scholar 

  • Wang Y et al (2014) Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channe. eLife 3:01834. doi:10.7554/eLife.01834

    Google Scholar 

Download references

Acknowledgments

We thank Paul Rhode for the purification of M42C MscL, Gilberto Casillas for transmission electron microscopy, and Prof. Yoon-Bo Shim for the cytotoxicity test. We also thank Dr. Edward J. Beck for critical reading of the manuscript and useful suggestions for its improvement. This work was supported by the ‘AIIM (Australian Institute for Innovative Materials) for Gold/2014’ grant in collaboration with Victor Chang Cardiac Research Institute, the Japanese Society for Promotion of Science (JSPS), for a fellowship to YN and the National Health and Medical Research Council of Australia for a Principal Research Fellowship to BM. This research used equipment funded by the Australian Research Council (ARC)—Linkage, Infrastructure, Equipment and Facilities (LIEF) grant LE120100104, located at the UOW Electron Microscopy Centre.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Martinac.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 5605 kb)

Supplementary material 2 (MOV 8443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, Y., Mustapić, M., Ebrahimian, H. et al. Magnetic nanoparticles for “smart liposomes”. Eur Biophys J 44, 647–654 (2015). https://doi.org/10.1007/s00249-015-1059-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1059-0

Keywords

Navigation