Skip to main content
Log in

Detailed study of the dielectric function of a lysozyme solution studied with molecular dynamics simulations

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The spread of microwave technology and new microwave applications in medicine have revitalized interest in the dielectric behavior of biological systems. In this work, the Fröhlich–Kirkwood approach and the linear response theory have been applied in conjunction with molecular dynamics simulations to study the dielectric response of a lysozyme solution as a model. The overall experimental dielectric behavior of a 9.88 mM lysozyme solution has been reproduced in a quantitative manner by employing a method based on the decomposition of the hydration shells close to the solute. Detailed analysis of the calculated spectra identified two δ-processes located at 200 MHz (δ1) and about 1 GHz (δ2), respectively. δ1 is associated mainly with the first hydration shell, while δ2 mainly with bulk water and the second hydration shell. Moreover, indications for the existence of an even faster relaxation in the 1011-Hz frequency range were found for the first time. Finally, the static dielectric constants of lysozyme and its first and second hydration shells were calculated based on the Fröhlich–Kirkwood and the linear response theory approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

F–K:

Fröhlich–Kirkwood

LRT:

Linear response theory

MD simulations:

Molecular dynamics simulations

2CD:

2 Component decomposition

DD:

Detailed decomposition

P:

Protein

W:

Water

S1:

First hydration shell

S2:

Second hydration shell

B:

Bulk water

P and nP:

Polar and nonpolar water molecules in the subsection “Decomposition of the first hydration shell

References

  • Antosiewicz J, Mccammon J, Gilson M (1994) Prediction of ph-dependent properties of proteins. J Mol Biol 238:415–436

    Article  CAS  PubMed  Google Scholar 

  • Bonicontro A, Calandrini V, Onori G (2001) Rotational and translational dynamics of lysozyme in water-glycerol solution. Colloid Surf B Biointerfaces 21:311–316

    Article  Google Scholar 

  • Boresch S, Steinhauser O (1997) Presumed versus real artifacts of the Ewald summation technique: the importance of dielectric boundary conditions. Berichte Der Bunsen-Gesellschaft-Physical Chemistry. Chem Phys 101:1019–1029

    CAS  Google Scholar 

  • Boresch S, Ringhofer S, Hochtl P, Steinhauser O (1999) Towards a better description and understanding of biomolecular solvation. Biophys Chem 78:43–68

    Article  CAS  PubMed  Google Scholar 

  • Boresch S, Hochtl P, Steinhauser O (2000) Studying the dielectric properties of a protein solution by computer simulation. J Phys Chem B 104:8743–8752

    Article  CAS  Google Scholar 

  • Brooks R, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) Charmm: a program for macromolecular energy, minimization and dynamics calculations. Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Caillol JM, Levesque D, Weis JJ (1986) Theoretical calculation of ionic solution properties. J Chem Phys 85:6645–6657

    Article  CAS  Google Scholar 

  • Caillol JM, Levesque D, Weis JJ (1989) Electrical properties of polarizable ionic solutions. I. Theoretical aspects. J Chem Phys 91(9):5544–5554

    Article  Google Scholar 

  • Cametti C, Marchetti S, Gambi C, Onon G (2011) Dielectric relaxation spectroscopy of lysozyme aqueous solutions: analysis of the δ-dispersion and the contribution of the hydration water. J Phys Chem B 115:7144–7153

    Article  CAS  PubMed  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Ebbinghaus S, Kim SJ, Heyden M, Yu X, Heugen U, Gruebele M, Leitner DM, Havenith M (2007) An extended dynamical hydration shell around proteins. PNAS 104(52):20749–20752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fröhlich H (1958) Theory of dielectrics. Oxford University Press, New York

    Google Scholar 

  • Harvey S, Hoekstra P (1972) Dielectric relaxation spectra of water adsorbed on lysozyme. J Phys Chem 76:2987–2994

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Shinyashiki N, Yagihara S (2002) Dynamical structure of water around biopolymers investigated by microwave dielectric measurements using time domain reflectometry method. J Non-Cryst Solids 305:328–332

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Gr 14:33–38

    Article  CAS  Google Scholar 

  • Inada Y, Loeffler HH, Rode MB (2002) Librational, vibrational, and exchange motions of water molecules in aqueous Ni(II) solution: classical and QM/MM molecular dynamics simulations. Chem Phys Lett 358(5–6):449–458

    Article  CAS  Google Scholar 

  • Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151(1):283–312

    Article  CAS  Google Scholar 

  • King G, Lee FS, Warshel A (1991) Microscopic simulations of macroscopic of dielectric constants of solvated proteins. J Chem Phys 95:4366–4377

    Article  CAS  Google Scholar 

  • Kirkwood JG (1939) The dielectric polarization of polar liquids. J Chem Phys 7:911–919

    Article  CAS  Google Scholar 

  • Knocks A, Weingartner H (2001) The dielectric spectrum of ubiquitin in aqueous solution. J Phys Chem 105:3635–3638

    Article  CAS  Google Scholar 

  • Kohler F (1972) The liquid state. Chemie, Weinheim

    Google Scholar 

  • Loffler G, Schreiber H, Steinhauser O (1997) Calculation of the dielectric properties of a protein and its solvent: theory and a case study. J Mol Biol 270:520–534

    Article  CAS  PubMed  Google Scholar 

  • Miura N, Asaka N, Shinyashiki N, Mashimo S (1994) Microwave dielectric study on bound water of globule proteins in aqueous solutions. Biopolymers 34:357–364

    Article  CAS  Google Scholar 

  • Nakamura H, Sakamoto T, Wada A (1988) A theoretical study of the dielectric constant of protein. Protein Eng 2:177–183

    Article  CAS  PubMed  Google Scholar 

  • Nandi N, Bagchi B (1998) Anomalous dielectric relaxation of aqueous protein solutions. J Phys Chem A 102:8217–8221

    Article  CAS  Google Scholar 

  • Neumann M (1986a) Computer simulation and the dielectric constant at finite wavelength. Mol Phys 57:97–121

    Article  CAS  Google Scholar 

  • Neumann M (1986b) Dielectric relaxation in water. Computer simulations with the tip4p potential. J Chem Phys 85:1567–1580

    Article  CAS  Google Scholar 

  • Neumann M, Steinhauser O (1983a) On the calculation of the dielectric constant using the Ewald–Kornfeld tensor. Chem Phys Lett 95:417–422

    Article  CAS  Google Scholar 

  • Neumann M, Steinhauser O (1983b) On the calculation of the frequency-dependent dielectric constant in computer simulations. Chem Phys Lett 102:508–513

    Article  CAS  Google Scholar 

  • Neumann M, Steinhauser O, Pawley GS (1984) Consistent calculation of the static and frequency-dependent dielectric constant in computer simulations. Mol Phys 52:97–113

    Article  CAS  Google Scholar 

  • Oleinikova A, Sasisanker P, Weingärtner H (2004) What can really be learned from dielectric spectroscopy of protein solutions? A case study of ribonuclease A. J Phys Chem B 108(24):8467–8474

    Article  CAS  Google Scholar 

  • Oleinikova A, Smolin N, Brovchenko I (2007) Influence of water clustering on the dynamics of hydration water at the surface of a lysozyme. Biophys J 93:2986–3000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Onsager L (1936) Electric moments of molecules in liquid media. J Am Chem Soc 58:1486–1493

    Article  CAS  Google Scholar 

  • Pethig R (1992) Protein–water interactions determined by dielectric methods. Ann Rev Phys Chem 43:177–205

    Article  CAS  Google Scholar 

  • Rudas T, Schröder C, Boresch S, Steinhauser O (2006) Simulation studies of the protein–water interface. II. Properties at the mesoscopic resolution. J Chem Phys 124(23):234908

    Article  CAS  PubMed  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Sanner MF, Spenner JC, Olson AJ (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38(3):305–320

    Article  CAS  PubMed  Google Scholar 

  • Simonson T, Perahia D (1995) Internal and interfacial dielectric-properties of cytochrome-c from molecular-dynamics in aqueous-solution. PNAS 92:1082–1086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simonson T, Perahia D, Brünger AT (1991) Microscopic theory of the dielectric properties of proteins. Biophys J 59:670–690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith SW (1999) The scientist and engineer’s guide to digital signal processing. Oxford University Press, New York, pp 141–168

    Google Scholar 

  • Smith PE, Brunne RM, Mark AE, Van Gunsteren WF (1993) Dielectric properties of trypsin inhibitor and lysozyme calculated from molecular dynamics simulations. J Phys Chem 97:2009–2014

    Article  CAS  Google Scholar 

  • Soda K, Shimbo Y, Seki Y, Taiji M (2011) Structural characteristics of hydration sites in lysozyme. Biophys Chem 156:31–42

    Article  CAS  PubMed  Google Scholar 

  • South G, Grant P (1972) Dielectric dispersion and dipole moment of myoglobin in water. Proc R Soc London Ser A 328:371–387

    Article  CAS  Google Scholar 

  • Suzuki M, Shigematsou J, Kodama T (1996) Hydrophobic hydration analysis on amino acid solutions by the microwave dielectric method. J Phys Chem 100:7279–7282

    Article  CAS  Google Scholar 

  • Svergun DI, Richard S, Koch MHJ, Sayers Z, Kuprin S, Zaccai G (1998) Protein hydration in solution: experimental observation by X-ray and neutron scattering. P Natl Acad Sci USA Biophys 95:2267–2272

    Article  CAS  Google Scholar 

  • Weingärtner H, Knocks A, Boresch S, Hochtl P, Steinhauser O (2001) Dielectric spectroscopy in aqueous solutions of oligosaccharides: experiment meets simulation. J Chem Phys 115:1463–1472

    Article  Google Scholar 

  • Yang L, Weerasinghe S, Smith P, Pettitt B (1995) Dielectric response of triplex DNA in ionic solution from simulations. Biophys J 69:1519–1527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yokoyama K, Kamei T, Minami H, Susuki M (2001) Hydration study of globular proteins by microwave dielectric spectroscopy. J Phys Chem 105:12622–12627

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported partly by the postgraduate courses of the Department of Biochemistry and Biotechnology “Biotechnology—Quality Assessment in Nutrition and the Environment” and “Applications of Molecular Biology- Genetics—Diagnostic Biomarkers”. Most simulations of this work have been performed on the HellasGrid infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios E. Papadopoulos.

Appendix

Appendix

As mentioned in section “Theoretical Background” (Eq. 3), the susceptibility χ can be expressed in terms of a Fourier–Laplace transform of the dipole moment time auto- (or cross-) correlation function. In the case of ions it takes the form:

$$\begin{aligned} \chi_{ij} - \frac{i\sigma ( 0)}{\omega } = \frac{ 1}{{ 3Vk_{B} T}}L \left[- \frac{\text{d}}{{{\text{d}}t}}\left\langle {{\mathbf{M}}_{\text{I}} ( 0 )\cdot {\mathbf{M}}_{\text{I}} (t )} \right\rangle \right]- \frac{i\sigma ( 0)}{\omega } \hfill \\ \begin{array}{*{20}c} {} & {} & {} \\ \end{array} = \frac{i}{{3Vk_{B} T}}L [\left\langle {{\mathbf{J}}_{\text{I}} ( 0 )\cdot {\mathbf{J}}_{\text{I}} (t )} \right\rangle ]- \frac{i\sigma ( 0)}{\omega } \hfill \\ \end{aligned}$$
(12)

where the term of the static conductivity (0)/ω is simply subtracted from both sides, because it is typically eliminated from the experimental spectrum. \(\varPhi_{\text{II}} (t )= \left\langle {{\mathbf{J}}_{\text{I}} ( 0 )\cdot {\mathbf{J}}_{\text{I}} (t )} \right\rangle\) is the time autocorrelation function of the ionic current, which in our case includes also the protein current due to its charge (+8e). That is:

$${\mathbf{J}}_{\text{I}} (t) = {\mathbf{J}}_{\text{II}} (t) + {\mathbf{J}}_{\text{PI}} (t) = \sum\limits_{i = 1}^{N} {q_{i} {\mathbf{v}}_{i} + Q{\mathbf{v}}_{\text{MC}} }$$
(13)

Here v i is the velocity of ion i, Q is the total charge of protein and v MC the velocity of its center of mass.

The expression for the conductivity of the ionic current can be written as:

$$\sigma (\omega )= \frac{ 1}{{ 3\varepsilon_{ 0} Vk_{B} T}}L [\left\langle {{\mathbf{J}}_{\text{I}} ( 0 )\cdot {\mathbf{J}}_{\text{I}} (t )} \right\rangle ]$$
(14)

As in the case of dipole moment contribution, \(\left\langle {{\mathbf{J}}_{\text{I}} ( 0 )\cdot {\mathbf{J}}_{\text{I}} (t )} \right\rangle\) in the above equation is replaced by a fit function

$$f (t )= \sum\limits_{n = 1}^{ 3} {A_{n} {\text{sin(}}\omega_{n} t + \varphi_{\text{n}} ) {\text{exp(}} - t /\tau_{n} )}$$
(15)

with fit parameters reported in Table 6. Figure 9 represents the current autocorrelation function of our system as well as an appropriate fit.

Table 6 Fit parameters for the current autocorrelation function f(t)
Fig. 9
figure 9

The autocorrelation function of the current of our system (protein + ions) at 300 K. The blue diamonds represent the simulation data, while the red line is the corresponding fit

The static value of σ(0) is given from:

$$\sigma ( 0 )= \frac{ 1}{{ 3\varepsilon_{ 0} Vk_{B} T}}\mathop { \lim }\limits_{{{\text{t}} \to \infty }} \int_{ 0}^{t} {{\mathbf{J}}_{\text{I}} ( 0 )\cdot {\mathbf{J}}_{\text{I}} ( {\text{t}}^{'} ) {\text{d}}t^{'} }$$
(16)

Using Eqs. (1216), the real and the imaginary parts of the current contribution to the frequency-dependent dielectric constant can be found to be:

$$\begin{aligned} \text{Re} [\varepsilon_{I} (\omega )] = \frac{1}{{3\varepsilon_{0} Vk_{B} T}}\sum\limits_{n = 1}^{3} {\frac{{A_{n} t_{n} }}{2\omega }} \left[\frac{{t_{n} (\omega_{n} + \omega )\sin \phi_{n} - \cos \phi_{n} }}{{1 + t_{n}^{2} (\omega + \omega_{n} )^{2} }} - \hfill \right.\\ \left. \begin{array}{*{20}c} {} & {} & {} \\ \end{array} \frac{{t_{n} (\omega_{n} - \omega )\sin \phi_{n} - \cos \varphi_{n} }}{{1 + t_{n}^{2} (\omega_{n} - \omega )^{2} }}\right] \hfill \\ \end{aligned}$$
(17)
$$\begin{aligned} \text{Im} [\varepsilon_{I} (\omega )] = \frac{1}{{3\varepsilon_{0} Vk_{B} T}}\sum\limits_{n = 1}^{3} {\frac{{A_{n} t_{n} }}{2\omega }} \left[\frac{{\sin \phi_{n} - t_{n} (\omega - \omega_{n} )\cos \phi_{n} }}{{1 + t_{K}^{2} (\omega - \omega_{K} )^{2} }} + \hfill \right. \\ \left. \begin{array}{*{20}c} {} & {} & {} \\ \end{array} \frac{{\sin \phi_{n} + t_{n} (\omega + \omega_{n} )\cos \phi_{n} }}{{1 + t_{n}^{2} (\omega + \omega_{n} )^{2} }} - \frac{{2\sin \phi_{n} + t_{n} \omega_{n} \cos \phi_{n} }}{{1 + t_{n}^{2} \omega_{n}^{2} }}\right] \hfill \\ \end{aligned}$$
(18)

It should be noted that the above expressions have the form of 0/0 for ω → 0 and this is the result of subtracting the term (0)/ω (see Eq. 1). Using this, we can write:

$$\mathop {\lim }\limits_{\omega \to 0} \text{Re} [\varepsilon_{\rm I} (\omega )] = \frac{1}{{3\varepsilon_{0} Vk_{B} T}}\sum\limits_{n = 1}^{3} {\frac{{A_{n} t_{n} }}{2}\left[\frac{{2t_{n} \sin \phi_{n} + 4t_{n}^{2} \omega_{n} \cos \phi_{n} - 2t_{n}^{3} \omega_{n}^{2} \sin \phi_{n} }}{{(1 + t_{n}^{2} \omega_{n}^{2} )^{2} }}\right]}$$
(19)

Using fit parameters from Table 6 we simply find \(\mathop {\lim }\nolimits_{\varpi \to 0} \text{Re} \left[ {\varepsilon_{I} (\omega )} \right]\) = −0.007. This is a negligible contribution compared to that of the dipole moment (Fig. 3) and consequently is ignored in our calculations.

In Fig. 10, the real and the imaginary part of the current contribution to the frequency-dependent dielectric constant is shown.

Fig. 10
figure 10

The ionic contribution (protein + ions) to the real and imaginary part of the frequency-dependent dielectric constant of our system at 300 K

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Floros, S., Liakopoulou-Kyriakides, M., Karatasos, K. et al. Detailed study of the dielectric function of a lysozyme solution studied with molecular dynamics simulations. Eur Biophys J 44, 599–611 (2015). https://doi.org/10.1007/s00249-015-1052-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1052-7

Keywords

Navigation