Skip to main content
Log in

Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

A short review of biophysical mechanisms for electrotransfer of biaoctive molecules through the cell membrane by using electroporation is presented. The concept of transient hydrophilic aqueous pores and membrane electroporation mechanisms of single cells and cells in suspension models are analyzed. Alongside the theoretical approach, some peculiarities of drug and gene electrotransfer into cells and applications in clinical trials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YuA, Pastushenko VF, Tarasevich MR (1979) Electric breakdown of bilayer lipid membranes I. The main experimental facts and their qualitative discussion. Bioelectrochem Bioenerg 6:37–52

    CAS  Google Scholar 

  • Allen TW, Kuyucak S, Chung SH (1999) The effect of hydrophobic and hydrophilic channel walls on the structure and diffusion of water and ions. J Chem Phys 111:7985–7999

    CAS  Google Scholar 

  • André F, Mir LM (2004) DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther 11(Suppl 1):S33–S42

    PubMed  Google Scholar 

  • Antov Y, Barbul A, Mantsur H, Korenstein R (2005) Electroendocytosis: exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys J 88:2206–2223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Babakov A, Ermishkin LN, Liberman EA (1966) Influence of electric field on the capacity of phospholipid membranes. Nature 210:953–955

    CAS  PubMed  Google Scholar 

  • Belehradek J Jr, Orlowski S, Poddevin B, Paoletti C, Mir LM (1991) Electrochemotherapy of spontaneous mammary tumours in mice. Eur J Cancer 27:73–76

    PubMed  Google Scholar 

  • Benz R, Zimmermann U (1980) Pulse-length dependence of the electrical breakdown in lipid bilayer membranes. Biochim Biophys Acta 597:637–642

    CAS  PubMed  Google Scholar 

  • Bernhardt J, Pauly H (1973) On the generation of potential differences across the membranes of ellipsoidal cells in an alternating electrical field. Biophysik 10:89–98

    CAS  PubMed  Google Scholar 

  • Böckmann RA, de Groot BL, Kakorin S, Neumann E, Grubmüller H (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850

    PubMed Central  PubMed  Google Scholar 

  • Cadossi R, Ronchetti M, Cadossi M (2014) Locally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapy. Future Oncol 10:877–890

    CAS  PubMed  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cemazar M, Tamzali Y, Sersa G, Tozon N, Mir LM, Miklavcic D, Lowe R, Teissie J (2008) Electrochemotherapy in veterinary oncology. J Vet Intern Med 22:826–831

    CAS  PubMed  Google Scholar 

  • Chernomordik LV, Sukharev SI, Popov SV, Pastushenko VF, Sokirko AV, Abidor IG, Chizmadzhev YA (1987) The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. Biochim Biophys Acta 902:360–373

    CAS  PubMed  Google Scholar 

  • Corović S, Pavlin M, Miklavcic D (2007) Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. Biomed Eng Online 6:37–51

    PubMed Central  PubMed  Google Scholar 

  • Crowley JM (1973) Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophys J 13:711–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cruzeiro-Hansson L, Mouritsen OG (1988) Passive ion permeability of lipid membranes modelled via lipid-domain interfacial area. Biochim Biophys Acta 944:63–72

    CAS  PubMed  Google Scholar 

  • Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–5903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dean DA (2003) Electroporation of the vasculature and the lung. DNA Cell Biol 22:797–806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dimitrov DS, Sowers AE (1990) Membrane electroporation–fast molecular exchange by electroosmosis. Biochim Biophys Acta 1022:381–392

    CAS  PubMed  Google Scholar 

  • Escoffre JM, Portet T, Favard C, Teissié J, Dean DS, Rols MP (2011) Electromediated formation of DNA complexes with cell membranes and its consequences for gene delivery. Biochim Biophys Acta 1808:1538–1543

    CAS  PubMed  Google Scholar 

  • Gabriel B, Teissié J (1997) Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophys J 73:2630–2637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gehl J, Skovsgaard T, Mir LM (1998) Enhancement of cytotoxicity by electropermeabilization: an improved method for screening drugs. Anticancer Drugs 9:319–325

    CAS  PubMed  Google Scholar 

  • Gehl J, Sorensen TH, Nielsen K, Raskmark P, Nielsen SL, Skovsgaard T, Mir LM (1999) In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta 1428:233–240

    CAS  PubMed  Google Scholar 

  • Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI (1988) Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta 940:275–287

    CAS  PubMed  Google Scholar 

  • Glass LF, Fenske NA, Jaroszeski M, Perrott R, Harvey DT, Reintgen DS, Heller R (1996) Bleomycin-mediated electrochemotherapy of basal cell carcinoma. J Am Acad Dermatol 34:82–86

    CAS  PubMed  Google Scholar 

  • Glogauer M, Lee W, McCulloch CA (1993) Induced endocytosis in human fibroblasts by electrical fields. Exp Cell Res 208:232–240

    CAS  PubMed  Google Scholar 

  • Golzio M, Teissie J, Rols MP (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA 99:1292–1297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Golzio M, Mazzolini L, Moller P, Rols MP, Teissié J (2005) Inhibition of gene expression in mice muscle by in vivo electrically mediated siRNA delivery. Gene Ther 12:246–251

    CAS  PubMed  Google Scholar 

  • Grosse C, Schwan HP (1992) Cellular membrane potentials induced by alternating fields. Biophys J 63:1632–1642

    CAS  PubMed Central  PubMed  Google Scholar 

  • He H, Chang DC, Lee YK (2007) Using a micro electroporation chip to determine the optimal physical parameters in the uptake of biomolecules in HeLa cells. Bioelectrochemistry 70:363–368

    CAS  PubMed  Google Scholar 

  • Heller LC, Heller R (2006) In vivo electroporation for gene therapy. Hum Gene Ther 17:890–897

    CAS  PubMed  Google Scholar 

  • Heller R, Jaroszeski MJ, Glass LF, Messina JL, Rapaport DP, DeConti RC, Fenske NA, Gilbert RA, Mir LM, Reintgen DS (1996) Phase I/II trial for the treatment of cutaneous and subcutaneous tumors using electrochemotherapy. Cancer 77:964–971

    CAS  PubMed  Google Scholar 

  • Heller R, Jaroszeski MJ, Reintgen DS, Puleo CA, DeConti RC, Gilbert RA, Glass LF (1998) Treatment of cutaneous and subcutaneous tumors with electrochemotherapy using intralesional bleomycin. Cancer 83:148–157

    CAS  PubMed  Google Scholar 

  • Hibino M, Itoh H, Kinosita K Jr (1993) Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys J 64:1789–1800

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hofmann GA (2000) Instrumentation and electrodes for in vivo electroporation. In: Jaroszeski MJ, Heller R, Gilbert R (eds) Methods in molecular medicine, vol 37. Humana Press Inc, New York, pp 37–67

    Google Scholar 

  • Jaichandran S, Yap ST, Khoo AB, Ho LP, Tien SL, Kon OL (2006) In vivo liver electroporation: optimization and demonstration of therapeutic efficacy. Hum Gene Ther 17:362–375

    CAS  PubMed  Google Scholar 

  • Jaroszeski MJ, Gilbert RA, Heller R (1997) In vivo antitumor effects of electrochemotherapy in a hepatoma model. Biochim Biophys Acta 1334:15–18

    CAS  PubMed  Google Scholar 

  • Kakorin S, Neumann E (2002) Ionic conductivity of electroporated lipid bilayer membranes. Bioelectrochemistry 56:163–166

    CAS  PubMed  Google Scholar 

  • Kinosita K Jr, Tsong TY (1977) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438–441

    PubMed  Google Scholar 

  • Kinosita K Jr, Tsong TY (1978) Survival of sucrose-loaded erythrocytes in the circulation. Nature 272:258–260

    CAS  PubMed  Google Scholar 

  • Kinosita K Jr, Ashikawa I, Saita N, Yoshimura H, Itoh H, Nagayama K, Ikegami A (1988) Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophys J 53:1015–1019

    PubMed Central  PubMed  Google Scholar 

  • Kotulska M, Basalyga J, Derylo MB, Sadowski P (2010) Metastable pores at the onset of constant-current electroporation. J Membr Biol 236:37–41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Labanauskiene J, Didziapetriene J, Aleknavicius E (2006) The role of electroporation in increasing the effectiveness of anticancer drugs. Medicina (Kaunas) 42:33–37

    Google Scholar 

  • Labanauskiene J, Satkauskas S, Kirveliene V, Venslauskas M, Atkocius V, Didziapetriene J (2009) Enhancement of photodynamic tumor therapy effectiveness by electroporation in vitro. Medicina (Kaunas) 45:372–377

    Google Scholar 

  • Levitan I, Fang Y, Rosenhouse-Dantsker A, Romanenko V (2010) Cholesterol and ion channels. Subcell Biochem 51:509–549

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Lin H (2011) Numerical simulation of molecular uptake via electroporation. Bioelectrochemistry 82:10–21

    CAS  PubMed  Google Scholar 

  • Liang H, Purucker WJ, Stenger DA, Kubiniec RT, Hui SW (1988) Uptake of fluorescence-labeled dextrans by 10T 1/2 fibroblasts following permeation by rectangular and exponential-decay electric field pulses. Biotechniques 6:550–552 554, 556-8

    CAS  PubMed  Google Scholar 

  • Litster JD (1975) Stability of lipid bilayers and red blood cell membranes. Phys Lett 53:193–194

    Google Scholar 

  • Matthiessen LW, Johannesen HH, Hendel HW, Moss T, Kamby C, Gehl J (2012) Electrochemotherapy for large cutaneous recurrence of breast cancer: a phase II clinical trial. Acta Oncol 51:713–721

    PubMed  Google Scholar 

  • Mehrle W, Zimmermann U, Hampp R (1985) Evidence for asymmetrical uptake of fluorescent dyes through electro-permeabilized membranes of Avena meosphyll protoplasts. FEBS Lett 185:89–94

    CAS  Google Scholar 

  • Miklavcic D, Semrov D, Mekid H, Mir LM (2000) A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta 1523:73–83

    CAS  PubMed  Google Scholar 

  • Miklavcic D, Snoj M, Zupanic A, Kos B, Cemazar M, Kropivnik M, Bracko M, Pecnik T, Gadzijev E, Sersa G (2010) Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy. Biomed Eng Online 9:10. doi:10.1186/1475-925X-9-10

    PubMed Central  PubMed  Google Scholar 

  • Mir LM, Orlowski S, Belehradek J Jr, Paoletti C (1991) Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer 27:68–72

    CAS  PubMed  Google Scholar 

  • Mir LM et al (1998) Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. Br J Cancer 77:2336–2342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, Delaere P, Branellec D, Schwartz B, Scherman D (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 96:4262–4267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mir LM et al (2006) Standard operating procedures of the electrochemotherapy. Eur J Cancer Suppl 4:14–25

    CAS  Google Scholar 

  • Morgan WF, Day JP (1995) The introduction of proteins into mammalian cells by electroporation. Methods Mol Biol 48:63–71

    CAS  PubMed  Google Scholar 

  • Movahed S, Li D (2012) Electrokinetic transport through the nanopores in cell membrane during electroporation. J Colloid Interface Sci 369:442–452

    CAS  PubMed  Google Scholar 

  • Needham D, Hochmuth RM (1989) Electro-mechanical permeabilization of lipid vesicles role of membrane tension and compressibility. Biophys J 55:1001–1009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neumann E (1989) The relaxation hysteresis of membrane electroporation. In: Neumann E, Sowers AE, Jordan C (eds) Electroporation and Electrofusion in Cell Biology. Springer, US, pp 61–82

    Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    CAS  PubMed  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neumann E, Sowers AE, Jordan CA (1989) Electroporation and electrofusion in cell biology. Plenum Press, New York

    Google Scholar 

  • Neumann E, Toensing K, Kakorin S, Budde P, Frey J (1998) Mechanism of electroporative dye uptake by mouse B cells. Biophys J 74:98–108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neumann E, Kakorin S, Toensing K (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48:3–16

    CAS  PubMed  Google Scholar 

  • Neumann E, Kakorin S, Toensing K (2000a) Principles of membrane electroporation and transport of macromolecules. In: Jaroszeski MJ, Heller R, Gilbert R (eds) Electrochemotherapy, electrogenetherapy, and transdermal drug delivery electrically mediated delivery of molecules to cells. Humana Press, New York, pp 1–36

    Google Scholar 

  • Neumann E, Kakorin S, Toensing K (2000b) Principles of membrane electroporation and transport of macromolecules. Methods Mol Med 37:1–35

    CAS  PubMed  Google Scholar 

  • Neumann E, Tönsing K, Siemens P (2000c) Perspectives for microelectrode arrays for biosensing and membrane electroporation. Bioelectrochemistry 51:125–132

    CAS  PubMed  Google Scholar 

  • Nishi T, Yoshizato K, Yamashiro S, Takeshima H, Sato K, Hamada K, Kitamura I, Yoshimura T, Saya H, Kuratsu J, Ushio Y (1996) High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation. Cancer Res 56:1050–1055

    CAS  PubMed  Google Scholar 

  • Ogura T (2002) In vivo electroporation: a new frontier for gene delivery and embryology. Differentiation 70:163–171

    CAS  PubMed  Google Scholar 

  • Orlowski S, Mir LM (1993) Cell electropermeabilization: a new tool for biochemical and pharmacological studies. Biochim Biophys Acta 1154:51–63

    CAS  PubMed  Google Scholar 

  • Orlowski S, Belehradek J Jr, Paoletti C, Mir LM (1988) Transient electropermeabilization of cells in culture increase of the cytotoxicity of anticancer drugs. Biochem Pharmacol 37:4727–4733

    CAS  PubMed  Google Scholar 

  • Paganin-Gioanni A, Bellard E, Escoffre JM, Rols MP, Teissié J, Golzio M (2011) Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells. PNAS 108:10443–10447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parsegian A (1969) Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221:844–846

    CAS  PubMed  Google Scholar 

  • Pavlin M, Miklavcic D (2008) Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation—relation between short-lived and long-lived pores. Bioelectrochemistry 74:38–46

    CAS  PubMed  Google Scholar 

  • Pavselj N, Préat V (2005) DNA electrotransfer into the skin using a combination of one high- and one low-voltage pulse. J Control Release 106:407–415

    CAS  PubMed  Google Scholar 

  • Petrache HI, Tristram-Nagle S, Gawrisch K, Harries D, Parsegian VA, Nagle JF (2004) Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt. Biophys J 86:1574–1586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petrov AG, Seleznev SA, Derzhanski A (1979) Principles and methods of liquid crystal physics applied to the structure and functions of biological membranes. Acta Phys Pol A55:385–405

    CAS  Google Scholar 

  • Pliquett UF, Zewert TE, Chen T, Langer R, Weaver JC (1996) Imaging of fluorescent molecule and small ion transport through human stratum corneum during high voltage pulsing: localized transport regions are involved. Biophys Chem 58:185–204

    CAS  PubMed  Google Scholar 

  • Potter H, Weir L, Leder P (1984) Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci USA 81:7161–7165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prausnitz MR, Milano CD, Gimm JA, Langer R, Weaver JC (1994) Quantitative study of molecular transport due to electroporation: uptake of bovine serum albumin by erythrocyte ghosts. Biophys J 66:1522–1530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prausnitz MR, Corbett JD, Gimm JA, Golan DE, Langer R, Weaver JC (1995) Millisecond measurement of transport during and after an electroporation pulse. Biophys J 68:1864–1870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pucihar G, Kotnik T, Miklavcic D, Teissié J (2008) Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J 95:2837–2848

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rebersek M, Corović S, Sersa G, Miklavcic D (2008) Electrode commutation sequence for honeycomb arrangement of electrodes in electrochemotherapy and corresponding electric field distribution. Bioelectrochemistry 74:26–31

    CAS  PubMed  Google Scholar 

  • Rols MP, Teissié J (1990) Electropermeabilization of mammalian cells quantitative analysis of the phenomenon. Biophys J 58:1089–1098

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rols MP, Teissié J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rols MP, Femenia P, Teissie J (1995) Long-lived macropinocytosis takes place in electropermeabilized mammalian cells. Biochem Biophys Res Commun 208:26–35

    CAS  PubMed  Google Scholar 

  • Rols MP, Delteil C, Golzio M, Dumond P, Cros S, Teissie J (1998) In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 16:168–171

    CAS  PubMed  Google Scholar 

  • Rols MP, Tamzali Y, Teissié J (2002) Electrochemotherapy of horses A preliminary clinical report. Bioelectrochemistry 55:101–105

    CAS  PubMed  Google Scholar 

  • Rosazza C, Escoffre JM, Zumbusch A, Rols MP (2011) The actin cytoskeleton has an active role in the electrotransfer of plasmid DNA in mammalian cells. Mol Ther 19:913–921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosazza C, Phez E, Escoffre JM, Cézanne L, Zumbusch A, Rols MP (2012) Cholesterol implications in plasmid DNA electrotransfer: evidence for the involvement of endocytotic pathways. Int J Pharm 423:134–143

    CAS  PubMed  Google Scholar 

  • Ryttsén F, Farre C, Brennan C, Weber SG, Nolkrantz K, Jardemark K, Chiu DT, Orwar O (2000) Characterization of single-cell electroporation by using patch-clamp and fluorescence microscopy. Biophys J 79:1993–2001

    PubMed Central  PubMed  Google Scholar 

  • Sansom MS, Smith GR, Adcock C, Biggin PC (1997) The dielectric properties of water within model transbilayer pores. Biophys J 73:2404–2415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Satkauskas S, Bureau MF, Mahfoudi A, Mir LM (2001) Slow accumulation of plasmid in muscle cells: supporting evidence for a mechanism of DNA uptake by receptor-mediated endocytosis. Mol Ther 4:317–323

    CAS  PubMed  Google Scholar 

  • Satkauskas S, Bureau MF, Puc M, Mahfoudi A, Scherman D, Miklavcic D, Mir LM (2002) Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol Ther 5:133–140

    CAS  PubMed  Google Scholar 

  • Satkauskas S, André F, Bureau MF, Scherman D, Miklavcic D, Mir LM (2005a) Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Hum Gene Ther 16:1194–1201

    CAS  PubMed  Google Scholar 

  • Satkauskas S, Batiuskaite D, Salomskaite-Davalgiene S, Venslauskas MS (2005b) Effectiveness of tumor electrochemotherapy as a function of electric pulse strength and duration. Bioelectrochemistry 65:105–111

    CAS  PubMed  Google Scholar 

  • Satkauskas S, Ruzgys P, Venslauskas MS (2012) Towards the mechanisms for efficient gene transfer into cells and tissues by means of cell electroporation. Expert Opin Biol Ther 12:275–286

    CAS  PubMed  Google Scholar 

  • Saulis G, Venslauskas MS (1988) Asymmetrical electrical breakdown of the cells theory of phenomenon. Stud Biophys 128:155–161

    Google Scholar 

  • Saulis G, Venslauskas MS (1993) Cell electroporation: Part 2. Experimental measurements of the kinetics of pore formation in human erythrocytes. Bioelectrochem Bioenerg 36:237–248

    Google Scholar 

  • Saulis G, Venslauskas MV, Naktinis J (1991) Kinetics of pore resealing in cell membranes after electroporation. Bioelectrochem Bioenerg 321:1–13

    Google Scholar 

  • Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448

    CAS  PubMed  Google Scholar 

  • Schwan HP (1957) Electrical properties of tissue and cell suspensions. Adv Biol Med Phys 5:147–209

    CAS  PubMed  Google Scholar 

  • Sersa G, Cemazar M, Miklavcic D (1995) Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum (II) in mice. Cancer Res 55:3450–3455

    CAS  PubMed  Google Scholar 

  • Sersa G, Stabuc B, Cemazar M, Miklavcic D, Rudolf Z (2000) Electrochemotherapy with cisplatin: the systemic antitumour effectiveness of cisplatin can be potentiated locally by the application of electric pulses in the treatment of malignant melanoma skin metastases. Melanoma Res 10:381–385

    CAS  PubMed  Google Scholar 

  • Shil P, Kumar A, Vidyasagar PB, Mishra KP (2006) Electroporation enhances radiation and doxorubicin-induced toxicity in solid tumor in vivo. J Environ Pathol Toxicol Oncol 25:625–632

    CAS  PubMed  Google Scholar 

  • Sowers AE, Lieber MR (1986) Electropore diameters, lifetimes, numbers, and locations in individual erythrocyte ghosts. FEBS Lett 205:179–184

    CAS  PubMed  Google Scholar 

  • Spugnini EP, Citro G, Baldi A (2009) Adjuvant electrochemotherapy in veterinary patients: a model for the planning of future therapies in humans. J Exp Clin Cancer Res 28:114–118

    PubMed Central  PubMed  Google Scholar 

  • Sugar IP (1979) A theory of the electric field-induced phase transition of phospholipid bilayers. Biochim Biophys Acta 556:72–85

    CAS  PubMed  Google Scholar 

  • Sugar IP, Neumann E (1984) Stochastic model for electric field-induced membrane pores Electroporation. Biophys Chem 19:211–225

    CAS  PubMed  Google Scholar 

  • Sukharev SI, Klenchin VA, Serov SM, Chernomordik LV, Chizmadzhev YuA (1992) Electroporation and electrophoretic DNA transfer into cells The effect of DNA interaction with electropores. Biophys J 63:1320–1327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Susil R, Šemrov D, Miklavčič D (1998) Electric field-induced transmembrane potential depends on cell density and organization. Electro Magnetobiol 17:391–399

    Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taupin C, Dvolaitzky M, Sauterey C (1975) Osmotic pressure induced pores in phospholipid vesicles. Biochemistry 14:4771–4775

    CAS  PubMed  Google Scholar 

  • Teissié J, Rols MP (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J 65:409–413

    PubMed Central  PubMed  Google Scholar 

  • Tekle E, Astumian RD, Chock PB (1994) Selective and asymmetric molecular transport across electroporated cell membranes. Proc Natl Acad Sci USA 91(24):11512–11516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tekle E, Astumian RD, Friauf WA, Chock PB (2001) Asymmetric pore distribution and loss of membrane lipid in electroporated DOPC vesicles. Biophys J 81:960–968

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teruel MN, Meyer T (1997) Electroporation-induced formation of individual calcium entry sites in the cell body and processes of adherent cells. Biophys J 73:1785–1796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tieleman DP (2004) The molecular basis of electroporation BMC Biochem 5:10

    Google Scholar 

  • Titomirov AV, Sukharev S, Kistanova E (1991) In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1088:131–134

    CAS  PubMed  Google Scholar 

  • Tozon N, Kodre V, Sersa G, Cemazar M (2005) Effective treatment of perianal tumors in dogs with electrochemotherapy. Anticancer Res 25:839–845

    PubMed  Google Scholar 

  • Valic B, Golzio M, Pavlin M, Schatz A, Faurie C, Gabriel B, Teissié J, Rols MP, Miklavcic D (2003) Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur Biophys J 32:519–528

    PubMed  Google Scholar 

  • Venslauskas MS, Satkauskas S, Rodaite-Riseviciene R (2010) Efficiency of the delivery of small charged molecules into cells in vitro. Bioelectrochemistry 79:130–135

    CAS  PubMed  Google Scholar 

  • Vernier PT, Ziegler MJ (2007) Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. J Phys Chem B 111:12993–12996

    CAS  PubMed  Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Salemi S, Craft CM, Gundersen MA (2003) Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun 310:286–295

    CAS  PubMed  Google Scholar 

  • Wang HY, Lu C (2006) High-throughput and real-time study of single cell electroporation using microfluidics: effects of medium osmolarity. Biotechnol Bioeng 95:1116–1125

    CAS  PubMed  Google Scholar 

  • Weaver JC, Barnet A (1992) Progress toward a theoretical model for electroporation mechanism: membrane electrical behavior and molecular transport. In: Chang DC, Chassy BM, Saunders JA, Sowers AE (eds) Guide to electroporation and electrofusion. Academic Press, San Diego, pp 92–117

    Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    CAS  Google Scholar 

  • Wobschall D (1972) Voltage dependence of bilayer membrane capacitance. J Colloid Interface Sci 40:417–423

    CAS  Google Scholar 

  • Wolf H, Rols MP, Boldt E, Neumann E, Teissié J (1994) Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys J 66:524–531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zaharoff DA, Henshaw JW, Mossop B, Yuan F (2008) Mechanistic analysis of electroporation-induced cellular uptake of macromolecules. Exp Biol Med (Maywood) 233:94–105

    CAS  Google Scholar 

  • Zimmermann U, Pilwat G, Pequeux A, Gilles R (1980a) Electromechanical properties of human erythrocyte membranes: the pressure dependence of potassium permeability. J Membr Biol 54:103–113

    CAS  PubMed  Google Scholar 

  • Zimmermann U, Vienken J, Pilwat G (1980b) Development of carrier systems: electricalfield induced effects in cell membranes. Bioelectrochem Bioenerg 7:553–574

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants (TAP-03/2011) and (MIP-034/2013) from the Research Council of Lithuania. The authors would also like to acknowledge networking support by the COST Action TD1104.

Conflict of interest

The authors of this review article explicitly state that there are no declarations of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mindaugas S. Venslauskas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venslauskas, M.S., Šatkauskas, S. Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation. Eur Biophys J 44, 277–289 (2015). https://doi.org/10.1007/s00249-015-1025-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1025-x

Keywords

Navigation