Skip to main content
Log in

Calculation of the infrared spectra of proteins

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The CHARMM22 force field with associated partial charges is used to calculate the infrared spectra of a number of small proteins and some larger biothreat proteins. The calculated high-frequency region, from about 2,500 to 3,500 cm−1, is dominated by stretching modes of hydrogen bonded to other atoms, and is very similar in all proteins. There is a peak at 3,430 cm−1 whose intensity is predicted by these calculations to be a direct measure of arginine content. The calculated low-frequency THz region, up to 300 cm−1, is also very similar in all the proteins and just reflects the vibrational density of states in agreement with experimental results. Calculations show that the intermediate-frequency region between 500 and 1,200 cm−1 shows the greatest difference between individual proteins and is also the least affected by water absorption. However, to match experimental measurements in the amide region, it was necessary to reduce the hydrogen partial charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acbas G, Niessen KA, Snell EH, Markelz AG (2014) Optical measurements of long-range protein vibrations. Nat Commun 5:3076

    Article  PubMed  Google Scholar 

  • Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2:173–181

    Article  CAS  PubMed  Google Scholar 

  • Bour P, Sopkova J, Bednarova L, Malon P, Keiderling TA (1997) Transfer of molecular property tensors in Cartesian coordinates: a new algorithm for simulation of vibrational spectra. J Comput Chem 18:646–659

    Article  CAS  Google Scholar 

  • Brooks B, Karplus M (1983) Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci USA 80:6571–6575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487

    Article  CAS  PubMed  Google Scholar 

  • Choi J-H, Cho M (2009) Computational linear and nonlinear IR spectroscopy of amide I vibrations in proteins. In: Barth A, Haris PI (eds) Biological and biomedical infrared spectroscopy. IOS Press, Amsterdam, pp 224–260

    Google Scholar 

  • Choi JH, Lee H, Lee KK, Hahn S, Cho M (2007) Computational spectroscopy of ubiquitin: comparison between theory and experiments. J Chem Phys 126:045102

    Article  PubMed  Google Scholar 

  • Dong AC, Caughey WS (1994) Infrared methods for study of hemoglobin reactions and structures. Method Enzymol 232:139–175

    Article  CAS  Google Scholar 

  • Dong A, Huang P, Caughey WS (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29:3303–3308

    Article  CAS  PubMed  Google Scholar 

  • Dong A, Carpenter JF, Caughey WS (1995) Protein Infrared Database. http://www.unco.edu/nhs/chemistry/faculty/dong/irdata.htm

  • Gaigeot MP, Vuilleumier R, Sprik M, Borgis D (2005) Infrared spectroscopy of N-methylacetamide revisited by ab initio molecular dynamics simulations. J Chem Theory Comput 1:772–789

    Article  CAS  Google Scholar 

  • Goossens K, Smeller L, Frank J, Heremans K (1996) Pressure-tuning the conformation of bovine pancreatic trypsin inhibitor studied by Fourier-transform infrared spectroscopy. Eur J Biochem 236:254–262

    Article  CAS  PubMed  Google Scholar 

  • Grahnen JA, Amunson KE, Kubelka J (2010) DFT-based simulations of IR amide I′ spectra for a small protein in solution: comparison of explicit and empirical solvent models. J Phys Chem B 114:13011–13020

    Article  CAS  PubMed  Google Scholar 

  • Hayward S, Kitao A, Go N (1994) Harmonic and anharmonic aspects in the dynamics of BPTI—a normal-mode analysis and principal component analysis. Protein Sci 3:936–943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He YF, Chen JY, Knab JR, Zheng WJ, Markelz AG (2011) Evidence of protein collective motions on the picosecond timescale. Biophys J 100:1058–1065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hinsen K, Kneller GR (2008) Solvent effects in the slow dynamics of proteins. Protein Struct Funct Bioinform 70:1235–1242

    Article  CAS  Google Scholar 

  • Khajehpour M, Dashnau JL, Vanderkooi JM (2006) Infrared spectroscopy used to evaluate glycosylation of proteins. Anal Biochem 348:40–48

    Article  CAS  PubMed  Google Scholar 

  • Kitao A, Hirata F, Go N (1991) The effects of solvent on the conformation and the collective motions of protein - normal mode analysis and molecular-dynamics simulations of melittin in water and in vacuum. Chem Phys 158:447–472

    Article  CAS  Google Scholar 

  • Knab J, Chen JY, Markelz A (2006) Hydration dependence of conformational dielectric relaxation of lysozyme. Biophys J 90:2576–2581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lanczos C (1950) An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J Res Natl Bur Stand 45:255–282

    Article  Google Scholar 

  • Markelz AG (2008) Terahertz dielectric sensitivity to biomolecular structure and function. IEEE J Sel Top Quantum Electron 14:180–190

    Article  CAS  Google Scholar 

  • Markelz AG, Roitberg A, Heilweil EJ (2000) Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem Phys Lett 320:42–48

    Article  CAS  Google Scholar 

  • Mott AJ (2012) Calculating infrared spectra of proteins and other organic molecules based on normal modes, Chap 4. ProQuest Dissertations and Theses. Arizona State University, AZ. http://login.ezproxy1.lib.asu.edu/login?; http://search.proquest.com/docview/1040706787?accountid=4485

  • Mott AJ, Thirumuruganandham SP, Thorpe MF, Rez P (2013) Fast calculation of the infrared spectra of large biomolecules. Eur Biophys J Biophys Lett 42:795–801

    Article  CAS  Google Scholar 

  • Plusquellic DF, Siegrist K, Heilweil EJ, Esenturk O (2007) Applications of terahertz spectroscopy in biosystems. Chem Phys Chem 8:2412–2431

    CAS  PubMed  Google Scholar 

  • Ruegg M, Metzger V, Susi H (1975) Computer analyses of characteristic infrared bands of globular proteins. Biopolymers 14:1465–1471

    Article  CAS  PubMed  Google Scholar 

  • Stein SE (1992) NIST 35. NIST/EPA Gas-Phase Infrared Database. JCAMP Format

  • Tama F (2003) Normal mode analysis with simplified models to investigate the global dynamics of biological systems. Protein Pept Lett 10:119–132

    Article  CAS  PubMed  Google Scholar 

  • Tama F, Brooks CL (2002) The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus. J Mol Biol 318:733–747

    Article  CAS  PubMed  Google Scholar 

  • Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng 14:1–6

    Article  CAS  PubMed  Google Scholar 

  • Tama F, Gadea FX, Marques O, Sanejouand YH (2000) Building-block approach for determining low-frequency normal modes of macromolecules. Proteins Struct Funct Genet 41:1–7

    Article  CAS  PubMed  Google Scholar 

  • Tama F, Valle M, Frank J, Brooks CL (2003) Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc Natl Acad Sci USA 100:9319–9323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77:1905–1908

    Article  CAS  PubMed  Google Scholar 

  • Torii H, Tasumi M (1992) Model calculations on the amide-I infrared bands of globular proteins. J Chem Phys 96:3379–3387

    Article  CAS  Google Scholar 

  • Vinh NQ, Allen SJ, Plaxco KW (2011) Dielectric spectroscopy of proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions. J Am Chem Soc 133:8942–8947

    Article  CAS  PubMed  Google Scholar 

  • Zhang CF, Tarhan E, Ramdas AK, Weiner AM, Durbin SM (2004) Broadened far-infrared absorption spectra for hydrated and dehydrated myoglobin. J Phys Chem B 108:10077–10082

    Article  CAS  Google Scholar 

  • Zhang HL, Zukowski E, Balu R, Gregurick SK (2009) A dynamics study of the A-chain of ricin by terahertz vibrational calculation and normal modes analysis. J Mol Graph Model 27:655–663

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Defense Threat Reduction Agency Grant HDTRA-08-0040 for financial support. We thank Saravana Prakash Thirumuruganandham for discussions and Stephanie Cope for her experimental measurement of the IR spectrum of lysozyme (Fig. 1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Rez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mott, A.J., Rez, P. Calculation of the infrared spectra of proteins. Eur Biophys J 44, 103–112 (2015). https://doi.org/10.1007/s00249-014-1005-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-014-1005-6

Keywords

Navigation