Skip to main content
Log in

A permeability transition in liver mitochondria and liposomes induced by α,ω-dioic acids and Ca2+

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The article examines the molecular mechanism of the Ca2+-dependent cyclosporin A (CsA)-insensitive permeability transition in rat liver mitochondria induced by α,ω-dioic acids. The addition of α,ω-hexadecanedioic acid (HDA) to Ca2+-loaded liver mitochondria was shown to induce a high-amplitude swelling of the organelles, a drop of membrane potential and the release of Ca2+ from the matrix, the effects being insensitive to CsA. The experiments with liposomes loaded with sulforhodamine B (SRB) revealed that, like palmitic acid (PA), HDA was able to cause permeabilization of liposomal membranes. However, the kinetics of HDA- and PA-induced release of SRB from liposomes was different, and HDA was less effective than PA in the induction of SRB release. Using the method of ultrasound interferometry, we also showed that the addition of Ca2+ to HDA-containing liposomes did not change the phase state of liposomal membranes—in contrast to what was observed when Ca2+ was added to PA-containing vesicles. It was suggested that HDA/Ca2+- and PA/Ca2+-induced permeability transition occurs by different mechanisms. Using the method of dynamic light scattering, we further revealed that the addition of Ca2+ to HDA-containing liposomes induced their aggregation/fusion. Apparently, these processes result in a partial release of SRB due to the formation of fusion pores. The possibility that this mechanism underlies the HDA/Ca2+-induced permeability transition of the mitochondrial membrane is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CsA:

Cyclosporin A

HDA:

α,ω-Hexadecanedioic acid

PA:

Palmitic acid

TDA:

α,ω-Tetradecanedioic acid

SRB:

Sulforhodamine B

TPP+ :

Cation tetraphenylphosphonium

LUV:

Large unilamellar vesicle

TX-100:

Triton X-100

DPPC:

1,2-Dipalmitoylphosphatidylcholine

References

  • Agafonov A, Gritsenko E, Belosludtsev K, Kovalev A, Gateau-Roesch O, Saris N-EL, Mironova GD (2003) A permeability transition in liposomes induced by the formation of Ca2+/palmitic acid complexes. Biochim Biophys Acta 1609:153–160

    Article  PubMed  CAS  Google Scholar 

  • Agafonov AV, Gritsenko EN, Shlyapnikova EN, Kharakoz DP, Belosludtseva NV, Lezhnev EI, Saris Nils-Erik L, Mironova GD (2007) Ca2+-induced phase separation in the membrane of palmitate-containing liposomes and its possible relation to membrane permeabilization. J Membr Biol 215:57–68

    Article  PubMed  CAS  Google Scholar 

  • Astashev ME, Belosludtsev KN, Kharakoz DP (2014) Method for digital measurement of phase–frequency characteristics for a fixed length ultrasonic spectrometer. Acoust Phys 60:335–341

    Article  Google Scholar 

  • Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    PubMed  CAS  Google Scholar 

  • Belosludtsev KN, Belosludtseva NV, Mironova GD (2005) Possible mechanism for formation and regulation of the palmitate-induced cyclosporin A-insensitive mitochondrial pore. Biochemistry (Moscow) 70:815–821

    Article  CAS  Google Scholar 

  • Belosludtsev K, Saris N-E, Andersson LC, Belosludtseva N, Agafonov A, Sharma A, Moshkov DA, Mironova GD (2006) On the mechanism of palmitic acid-induced apoptosis: the role of a pore induced by palmitic acid and Ca2+ in mitochondria. J Bioenerg Biomembr 38:113–120

    Article  PubMed  CAS  Google Scholar 

  • Belosludtsev KN, Belosludtseva NV, Agafonov AV, Astashev ME, Kazakov AS, Saris N-EL, Mironova GD (2014) Ca2+-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: a comparative study. Biochim Biophys Acta 1838:2600–2606

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik LV, Kozlov MM (2003) Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72:175–207

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nat Struct Mol Biol 15:675–683

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Di Paola M, Lorusso M (2006) Interaction of free fatty acids with mitochondria: coupling, uncoupling and permeability transition. Biochim Biophys Acta 1757:1330–1337

    Article  PubMed  Google Scholar 

  • Dubinin MV, Adakeeva SI, Samartsev VN (2013) Long-chain α, ω-dioic acids as inducers of cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria loaded with calcium or strontium ions. Biochemistry (Moscow) 78:412–417

    Article  CAS  Google Scholar 

  • Dubinin MV, Vedernikov AA, Adakeeva SI, Khoroshavina EI, Samartsev VN (2014) Physiological modulators of cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria induced by calcium ions and α, ω-hexadecanedioic acid. Biochem (Mosc) Suppl Ser A Membr Cell Biol 8:30–36

    Article  Google Scholar 

  • Ferdinandusse S, Denis S, Van Roermund C, Wanders RJ, Dacremont G (2004) Identification of the peroxisomal β-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids. J Lipid Res 45:1104–1111

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB, Chapman ER (2008) The fusion pores of Ca2+-triggered exocytosis. Nat Struct Mol Biol 15:684–689

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenylphosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  PubMed  CAS  Google Scholar 

  • Kates M (1972) Techniques of Lipidology. Isolation, analysis and identification of lipids. Elsevier, New York

    Google Scholar 

  • Kharakoz DP, Panchelyuga MS, Tiktopulo EI, Shlyapnikova EA (2007) Critical temperatures and a critical chain length in saturated diacylphosphatidylcholines: calorimetric, ultrasonic and Monte Carlo simulation study of chain-melting/ordering in aqueous lipid dispersions. Chem Phys Lipids 150:217–228

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  PubMed  CAS  Google Scholar 

  • Kundu RK, Tonsgard JH, Getz GS (1991) Induction of omega-oxidation of monocarboxylic acids in rats by acetylsalicylic acid. J Clin Invest 88:1865–1872

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lentz BR, Malinin V, Haque ME, Evans K (2000) Protein machines and lipid assemblies: current views of cell membrane fusion. Curr Opin Struct Biol 10:607–615

    Article  PubMed  CAS  Google Scholar 

  • Malhi H, Guicciardi ME, Gores GL (2010) Hepatocyte death: a clear and present danger. Physiol Rev 90:1165–1194

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Markova OV, Bondarenko DI, Samartsev VN (1999) The anion-carrier mediated uncoupling effect of dicarboxylic fatty acids in liver mitochondria depends on the position of the second carboxyl group. Biochemistry (Moscow) 64:565–570

    CAS  Google Scholar 

  • Mironova GD, Gateau-Roesch O, Levrat C, Gritsenko E, Pavlov E, Lazareva AV, Limarenko E, Rey P, Louisot P, Saris N-EL (2001) Palmitic and stearic acids bind Ca2+ with high affinity and form nonspecific channels in black-lipid membranes. Possible relation to Ca2+-activated mitochondrial pores. J Bioenerg Biomembr 33:319–331

    Article  PubMed  CAS  Google Scholar 

  • Mironova GD, Gritsenko E, Gateau-Roesch O, Levrat C, Agafonov A, Belosludtsev K, Prigent A, Muntean D, Dubois M, Ovize M (2004) Formation of palmitic acid/Ca2+ complexes in the mitochondrial membrane: a possible role in the cyclosporin-insensitive permeability transition. J Bioenerg Biomembr 36:171–178

    Article  PubMed  CAS  Google Scholar 

  • Nelson CJ, Otis JP, Martin SL, Carey HV (2009) Analysis of the hibernation cycle using LC-MS-based metabolomics in ground squirrel liver. Physiol Genomics 37:43–51

    Article  PubMed  CAS  Google Scholar 

  • Orellana M, Rodrigo R, Valdes E (1998) Peroxisomal and microsomal fatty acid oxidation in liver of rats after chronic ethanol consumption. Gen Pharmacol 31:817–820

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos D, Nir S, Düzgünes N (1990) Molecular mechanisms of calcium-induced membrane fusion. J Bioenerg Biomembr 22:157–179

    Article  PubMed  CAS  Google Scholar 

  • Rasola A, Bernardi P (2011) Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium 50:222–233

    Article  PubMed  CAS  Google Scholar 

  • Reddy JK, Rao MS (2006) Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 290:852–858

    Article  Google Scholar 

  • Sanders RJ, Ofman R, Valianpou F, Kemp S, Wanders RJ (2005) Evidence for two enzymatic pathways for omega-oxidation of docosanoic acid in rat liver microsomes. J Lipid Res 46:1001–1008

    Article  PubMed  CAS  Google Scholar 

  • Sultan A, Sokolove P (2001a) Palmitic acid opens a novel cyclosporin A-insensitive pore in the inner mitochondrial membrane. Arch Biochem Biophys 386:37–51

    Article  PubMed  CAS  Google Scholar 

  • Sultan A, Sokolove P (2001b) Free fatty acid effects on mitochondrial permeability: an overview. Arch Biochem Biophys 386:52–61

    Article  PubMed  CAS  Google Scholar 

  • Tonsgard JH (1986) Serum dicarboxylic acids in Reye syndrome. J Pediatr 109:440–445

    Article  PubMed  CAS  Google Scholar 

  • Wanders RJ, Komen J, Kemp S (2011) Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans. FEBS J 278:182–194

    Article  PubMed  CAS  Google Scholar 

  • Wilschut J, Scholma J, Eastman SJ, Hope MJ, Cullis PR (1992) Ca2+-induced fusion of phospholipid vesicles containing free fatty acids: modulation by transmembrane pH gradients. Biochemistry 31:2629–2636

    Article  PubMed  CAS  Google Scholar 

  • Wojtczak L, Schönfeld P (1993) Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta 1183:41–57

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Alexey Agafonov for fruitful discussions. This study was supported by the Ministry of Education and Science of the Russian Federation (Project No. 1365) by the Government of RF (Project No. 14.Z50.31.0028) and by grants from the Russian Foundation for Basic Research (14-04-00688-a, 12-04-00430-a; 14-34-50380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Dubinin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinin, M.V., Samartsev, V.N., Astashev, M.E. et al. A permeability transition in liver mitochondria and liposomes induced by α,ω-dioic acids and Ca2+ . Eur Biophys J 43, 565–572 (2014). https://doi.org/10.1007/s00249-014-0986-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-014-0986-5

Keywords

Navigation