Skip to main content
Log in

Chagas disease: a homology model for the three-dimensional structure of the Trypanosoma cruzi ribosomal P0 antigenic protein

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Ribosomal P proteins form a “stalk” complex in the large subunit of the ribosomes. In Trypanosoma cruzi, the etiological agent of Chagas disease, the complex is formed by five P protein members: TcP0, TcP1α, TcP1β, TcP2α and TcP2β. The TcP0 protein has 34 kDa, and TcP1 and TcP2 proteins have 10 kDa. The structure of T. cruzi P0 and the stalk complex TcP0–TcP1α–TcP1β–TcP2α–TcP2β have not been solved to date. In this work, we constructed a three-dimensional molecular model for TcP0 using homology modeling as implemented in the MODELLER 9v12 software. The model was constructed using different templates: the X-ray structures of the protein P0 from Pirococcus horikoshii, a segment from the Danio renio Ca+2/K+ channel and the C-terminal peptide (C13) from T. cruzi ribosomal P2 protein; the Cryo-EM structure of Triticum aestivum P0 protein and the NMR structure of Homo sapiens P1 ribosomal protein. TcP0 has a 200-residue-long N-terminal, which is an α/β globular stable domain, and a flexible C-terminal, 120-residue-long domain. The molecular surface electrostatic potential and hydrophobic surface were calculated. The surface properties are important for the C-terminal's antigenic properties. They are also responsible for P0-specific binding to RNA26S and the binding to the P1–P2 proteins. We explored and identified protein interactions that may be involved in conformational stability. The structure proposed in this work represents a first structural report for the TcP0 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armache JP, Jarasch A, Anger AM, Villa E, Becker T, Bhushan S, Jossinet F, Habeck M, Dindar G, Franckenberg S, Marquez V, Mielke T, Thomm M, Berninghausen O, Beatrix B, Söding J, Westhof E, Wilson DN, Beckmann R (2010) Localization of eukaryote-specific ribosomal proteins in a 5.5-Å cryo-EM map of the 80S eukaryotic ribosome. Proc Natl Acad Sci USA 107(46):19754–19759. doi:10.1073/pnas.1009999107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bailey-Serres J, Vangala S, Szick K, Lee CH (1997) Acidic phosphoprotein complex of the 60 S ribosomal subunit of maize seedling roots. Components and changes in response to flooding. Plant Physiol 114:1293–1305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bocharov EV, Sobol AG, Pavlov KV, Korzhnev DM, Jaravine VA, Gudkov AT, Arseniev AS (2004) From structure and dynamics of protein L7/L12 to molecular switching in ribosome. J Biol Chem 279:17697–17706

    Article  CAS  PubMed  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos. http://www.pymol.org

  • Diaconu M, Kothe U, Schlunzen F, Fisher N, Harms JM, Tonevitsky AG, Stark H, Rodnina MV, Wahl MC (2005) Structural basis for the function of the ribosomal L7/L12 stalk in factor binding and GTPase activation. Cell 121:991–1004

    Article  CAS  PubMed  Google Scholar 

  • Emsley P, Lohkamp B, Scott WG, Cowtan K (2012) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66(Pt 4):486–501. doi:10.1107/S0907444910007493

    Google Scholar 

  • George RA, Heringa J (2002) An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng 15(11):871–879

    Article  CAS  PubMed  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with clustal X. Trends Biochem Sci 23:403–405

    Article  CAS  PubMed  Google Scholar 

  • Juri Ayub M, Levin MJ, Aguilar CF (2001) Overexpression and refolding of the hydrophobic ribosomal P0 protein from Trypanosoma cruzi: a component of the P1/P2/P0 complex. Protein Expr Purif 22:225–233

    Article  CAS  PubMed  Google Scholar 

  • Juri Ayub M, Gómez Barroso A, Levin MJ, Aguilar CF (2005a) Preliminary structural studies of the hydrophobic ribosomal P0 Protein from Trypanosoma cruzi: a part of the P1/P2/P0 complex. Protein Pept Lett 12:521–526

    Article  Google Scholar 

  • Juri Ayub M, Smulski CR, Nyambega B, Bercovich N, Masiga D, Vazquez MP, Aguilar CF, Levin MJ (2005b) Protein–protein interaction map of the Trypanosoma cruzi ribosomal P protein complex. Gene 357(2):129–136

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Lee KM, Yusa K, Chu LO, Yu CW, Oono M, Miyoshi T, Ito K, Shaw PC, Wong KB, Uchiumi T (2013) Solution structure of human P1*P2 heterodimer provides insights into the role of eukaryotic stalk in recruiting the ribosome-inactivating protein trichosanthin to the ribosome. Nucleic Acids Res 18:8776–8787. doi:10.1093/nar/gkt636

    Article  Google Scholar 

  • Liljas A (1991) Comparative biochemistry and biophysics of ribosomal proteins. Int Rev Cytol 124:103–136

    Article  CAS  PubMed  Google Scholar 

  • Lopez Bergami P, Scaglione J, Levin MJ (2001) Antibodies against the carboxyl-terminal end of the Trypanosoma cruzi ribosomal P proteins are pathogenic. FASEB J 15:2602–2612

    Article  CAS  PubMed  Google Scholar 

  • Marks DS, Hopf TA, Sander C (2012) Protein structure prediction from sequence variation. Nat Biotechnol 30:1072–1080. doi:10.1038/nbt.2419

    Article  CAS  PubMed  Google Scholar 

  • Naganuma T, Nomura N, Yao M, Mochizuki M, Uchiumi T, Tanaka I (2010) Structural basis for translation factor recruitment to the eukaryotic/archaeal ribosomes. J Biol Chem 285(7):4747–4756. doi:10.1074/jbc.M109.068098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pizarro JC, Boulot G, Bentley GA, Gómez KA, Hoebeke J, Hontebeyrie M, Levin MJ, Smulski CR (2011) Crystal structure of the complex mAb 17.2 and the C-terminal region of Trypanosoma cruzi P2ß protein: implications in cross-reactivity. PLoS Negl Trop Dis 5(11):e1375. doi:10.1371/journal.pntd.0001375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 4:725–738

    Article  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  CAS  PubMed  Google Scholar 

  • Santos C, Ballesta JP (1995) The highly conserved protein P0 carboxyl end is essential for ribosome activity only in the absence of proteins P1 and P2. J Biol Chem 270:20608–20614

    Article  CAS  PubMed  Google Scholar 

  • Smulski CR, Longhi SA, Ayub MJ, Edreira MM, Simonetti L, Gómez KA, Basile JN, Chaloin O, Hoebeke J, Levin MJ (2011) Interaction map of the Trypanosoma cruzi ribosomal P protein complex (stalk) and the elongation factor 2. J Mol Recognit 2:359–370

    Article  Google Scholar 

  • Tchórzewski M, Krokowski D, Boguszewska A, Liljas A, Grankowski N (2003) Structural characterization of yeast acidic ribosomal P proteins forming the P1α–P2β heterocomplex. Biochemistry 42:3399–3408

    Article  PubMed  Google Scholar 

  • Tina KG, Bhadra R, Srinivasan N (2002) PIC: protein interactions calculator. Nucleic Acids Res 35:W473–W476

    Article  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27(10):527–533

    Article  CAS  PubMed  Google Scholar 

  • Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579:3346–3354

    Article  CAS  PubMed  Google Scholar 

  • Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 37(12):509–516. doi:10.1016/j.tibs.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2002) What does it means to be natively unfolded? Eur J Biochem 269:2–12

    Article  CAS  PubMed  Google Scholar 

  • Yuan P, Leonetti MD, Hsiung Y, MacKinnon R (2011) Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Nature 481(7379):94–97. doi:10.1038/nature10670

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Secretaría de Ciencia y Técnica de la Universidad Nacional de San Luis, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Arturo Gomez Barroso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez Barroso, J.A., Aguilar, C.F. Chagas disease: a homology model for the three-dimensional structure of the Trypanosoma cruzi ribosomal P0 antigenic protein. Eur Biophys J 43, 361–366 (2014). https://doi.org/10.1007/s00249-014-0967-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-014-0967-8

Keywords

Navigation