Skip to main content
Log in

Study of base pair mutations in proline-rich homeodomain (PRH)–DNA complexes using molecular dynamics

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Proline-rich homeodomain (PRH) is a regulatory protein controlling transcription and gene expression processes by binding to the specific sequence of DNA, especially to the sequence 5′-TAATNN-3′. The impact of base pair mutations on the binding between the PRH protein and DNA is investigated using molecular dynamics and free energy simulations to identify DNA sequences that form stable complexes with PRH. Three 20-ns molecular dynamics simulations (PRH–TAATTG, PRH–TAATTA and PRH–TAATGG complexes) in explicit solvent water were performed to investigate three complexes structurally. Structural analysis shows that the native TAATTG sequence forms a complex that is more stable than complexes with base pair mutations. It is also observed that upon mutation, the number and occupancy of the direct and water-mediated hydrogen bonds decrease. Free energy calculations performed with the thermodynamic integration method predict relative binding free energies of 0.64 and 2 kcal/mol for GC to AT and TA to GC mutations, respectively, suggesting that among the three DNA sequences, the PRH–TAATTG complex is more stable than the two mutated complexes. In addition, it is demonstrated that the stability of the PRH–TAATTA complex is greater than that of the PRH–TAATGG complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Beierlein FR, Kneale GG, Clark T (2011) Predicting the effects of basepair mutations in DNA-protein complexes by thermodynamic integration. Biophys J 101:1130–1138

    Article  PubMed  CAS  Google Scholar 

  • Beveridge DL, Dicapua FM (1989) Free-energy via molecular simulation—applications to chemical and biomolecular systems. Annu Rev Biophys Biophys Chem 18:431–492

    Article  PubMed  CAS  Google Scholar 

  • Billeter M (1996) Homeodomain-type DNA recognition. Prog Biophys Mol Biol 66:211–225

    Article  PubMed  CAS  Google Scholar 

  • Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem B 107:9535–9551

    Article  CAS  Google Scholar 

  • Case DA, Darden TA, Kollman PA (2008) AMBER 10. University of California, San Francisco, CA

    Google Scholar 

  • Crompton MR, Bartlett TJ, MacGregor AD, Manfioletti G, Buratti E, Giancotti V, Goodwin GH (1992) Identification of a novel vertebrate homeobox gene expressed in haematopoietic cells. Nucleic Acids Res 20:5661–5667

    Article  PubMed  CAS  Google Scholar 

  • Deng YQ, Roux B (2009) Computations of standard binding free energies with molecular dynamics simulations. J Phys Chem B 113:2234–2246

    Article  PubMed  CAS  Google Scholar 

  • Duan J, Nilsson L (2002) The role of residue 50 and hydration water molecules in homeodomain DNA recognition. Eur Biophys J 31:306–316

    Article  PubMed  CAS  Google Scholar 

  • Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  PubMed  CAS  Google Scholar 

  • Essman U, Perela L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  Google Scholar 

  • Foley AC, Mercola M (2005) Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Gene Dev 19:387–396

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel E, Rould MA, Chamber KA, Pabo CO (1998) Engrailed homeodomain–DNA complex at 2.2 Å resolution: a detailed view of the interface and comparison with other engrailed structures. J Mol Biol 284:351–361

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Kuczera K, Karplus M (1989) Hidden thermodynamics of mutant proteins: a molecular dynamics analysis. Science 244:1069–1072

    Article  PubMed  CAS  Google Scholar 

  • Gille C (2006) Structural interpretation of mutations and SNPs using STRAP-NT. Protein Sci 15:208–210

    Article  PubMed  CAS  Google Scholar 

  • Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72:1047–1069

    Article  PubMed  CAS  Google Scholar 

  • Guiral M, Bess K, Goodwin G, Jayaraman PS (2001) PRH represses transcription in hematopoietic cells by at least two independent mechanisms. J Biol Chem 276:2961–2970

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Chan R, Ramsey H, Li W, Xie X, Shelley WC, Martinez-Barbera JP, Bort B, Zaret K, Yoder M (2003) The homeoprotein Hex is required for hemangioblast differentiation. Blood 102:2428–2435

    Article  PubMed  CAS  Google Scholar 

  • Hanes SD, Brent R (1991) A genetic model for interaction of the homeodomain recognition helix with DNA. Science 251:426–430

    Article  PubMed  CAS  Google Scholar 

  • Hart K, Nilsson L (2008) Investigation of transcription factor Ndt80 affinity differences for wild type and mutant DNA: a molecular dynamics study. Proteins 73:325–337

    Article  PubMed  CAS  Google Scholar 

  • Hess B (2002) Determining the shear viscosity of model liquids from molecular dynamics simulations. J Chem Phys 116:209–217

    Article  CAS  Google Scholar 

  • Hockney RW (1970) The potential calculation and some applications. Methods Comput Phys 9:135–211

    Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  PubMed  Google Scholar 

  • Hovde S, Abate-Shen C, Geiger JH (2001) Crystal structure of the Msx-1 homeodomain/DNA complex. Biochemistry 40:12013–12021

    Article  PubMed  CAS  Google Scholar 

  • HyperChem (TM) (2002) Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32601, USA

  • Jalili S, Karami L (2012) Study of intermolecular contacts in the proline-rich homeodomain (PRH)–DNA complex using molecular dynamics simulations. Eur Biophys J 41:329–340

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman PS, Frampton J, Goodwin G (2000) The homeodomain protein PRH influences the differentiation of haematopoietic cells. Leukemia Res 24:1023–1031

    Article  CAS  Google Scholar 

  • Jorgensen WL, Charndrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern-recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu S, Sato A, Yamamoto T, Keng VW, Yoshida H, Yamazaki Y (2004) Identification of the transactivating region of the homeodomain protein, hex. J Biochem 135:217–223

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313

    Article  CAS  Google Scholar 

  • Kissinger CR, Liu BS, Martin-Blanco E, Kornberg TB, Pabo CO (1990) Crystal structure of an engrailed homeodomain–DNA complex at 2.8 Å resolution: a framework for understanding homeodomain–DNA interactions. Cell 63:579–590

    Article  PubMed  CAS  Google Scholar 

  • Kollman P (1993) Free-energy calculations—applications to chemical and biochemical phenomena. Chem Rev 93:2395–2417

    Article  CAS  Google Scholar 

  • Kwok JBJ, Li Q-X, Hallupp M, Whyte S, Ames D, Beyreuther K, Masters CL, Schofield PR (2000) Novel Leu723Pro amyloid precursor protein mutation increases amyloid β42(43) peptide levels and induces apoptosis. Ann Neurol 47:249–253

    Article  PubMed  CAS  Google Scholar 

  • Laughon A (1991) DNA binding specificity of homeodomains. Biochemistry 30:11357–11367

    Article  PubMed  CAS  Google Scholar 

  • Loken C et al (2010) SciNet: Lessons learned from building a power-efficient top-20 system and data centre. J Phys Conf Ser 256:012026

    Google Scholar 

  • Martinez-Barbera JP, Clements M, Thomas P, Rodriguez T, Meloy D, Kioussis D, Beddington RS (2000) The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127:2433–2445

    PubMed  CAS  Google Scholar 

  • Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  • Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  • Pellizzari L, D’Elia A, Rustighi A, Manfioletti G, Tell G, Damante G (2000) Expression and function of the homeodomain-containing protein Hex in thyroid cells. Nucleic Acids Res 28:2503–2511

    Article  PubMed  CAS  Google Scholar 

  • Pérez A, Marcha’n I, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys J 92:3817–3829

    Article  Google Scholar 

  • Qian YQ, Billeter M, Otting G, Müller M, Gehring WJ, Wüthrich K (1989) The structure of the Antennapedia homeodomain determined by NMR spectroscopy in solution: comparison with prokaryotic repressors. Cell 59:573–580

    Article  PubMed  CAS  Google Scholar 

  • Reyes CM, Kollman PA (1999) Molecular dynamics study of U1A-RNA complexes. RNA 5:235–244

    Article  PubMed  CAS  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-Alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Schier AF, Gehring WJ (1993) Functional specificity of the homeodomain protein fushi tarazu: the role of DNA-binding specificity in vivo. Proc Natl Acad Sci USA 90:1450–1454

    Article  PubMed  CAS  Google Scholar 

  • Sen S, Nilsson L (1999) Structure, interaction, dynamics and solvent effects on the DNA-EcoRI complex in aqueous solution from molecular dynamics simulation. Biophys J 77:1782–1800

    Article  PubMed  CAS  Google Scholar 

  • Simonson T, Archontis G, Karplus M (2002) Free energy simulations come of age: protein-ligand recognition. Acc Chem Res 35:430–437

    Article  PubMed  CAS  Google Scholar 

  • Sneddon SF, Tobias DJ, Brooks CL (1989) Thermodynamics of amide hydrogen-bond formation in polar and apolar solvents. J Mol Biol 209:817–820

    Article  PubMed  CAS  Google Scholar 

  • Steinbrecher T, Mobley DL, Case DA (2007) Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. J Chem Phys 127:214108–214121

    Article  PubMed  Google Scholar 

  • Swingler TE, Bess KL, Yao J, Stifani S, Jayaraman PS (2004) The proline-rich homeodomain protein recruits members of the Groucho/Transducin-like enhancer of split protein family to co-repress transcription in hematopoietic cells. J Biol Chem 279:34938–34947

    Article  PubMed  CAS  Google Scholar 

  • Tsui V, Radhakrishnan I, Wright PE, Case DA (2000) NMR and molecular dynamics studies of hydration of a zinc finger-DNA complex. J Mol Biol 302:1101–1117

    Article  PubMed  CAS  Google Scholar 

  • Tutorial 9, AMBER web site (2009) http://ambermd.org/tutorials/advanced/tutorial9/

  • van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22:1420–1426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Computations were performed on the gpc supercomputer at the SciNet (Loken et al. 2010) HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund—Research Excellence; and the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seifollah Jalili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalili, S., Karami, L. & Schofield, J. Study of base pair mutations in proline-rich homeodomain (PRH)–DNA complexes using molecular dynamics. Eur Biophys J 42, 427–440 (2013). https://doi.org/10.1007/s00249-013-0892-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-013-0892-2

Keywords

Navigation