Skip to main content
Log in

Diffusion NMR study of complex formation in membrane-associated peptides

European Biophysics Journal Aims and scope Submit manuscript

Abstract

Pulsed-field-gradient nuclear magnetic resonance (PFG-NMR) is used to obtain the true hydrodynamic size of complexes of peptides with sodium dodecyl sulfate SDS micelles. The peptide used in this study is a 19-residue antimicrobial peptide, GAD-2. Two smaller dipeptides, alanine–glycine (Ala–Gly) and tyrosine–leucine (Tyr–Leu), are used for comparison. We use PFG-NMR to simultaneously measure diffusion coefficients of both peptide and surfactant. These two inputs, as a function of SDS concentration, are then fit to a simple two species model that neglects hydrodynamic interactions between complexes. From this we obtain the fraction of free SDS, and the hydrodynamic size of complexes in a GAD-2–SDS system as a function of SDS concentration. These results are compared to those for smaller dipeptides and for peptide-free solutions. At low SDS concentrations ([SDS] ≤ 25 mM), the results self-consistently point to a GAD-2–SDS complex of fixed hydrodynamic size R = (5.5 ± 0.3) nm. At intermediate SDS concentrations (25 mM < [SDS] < 60 mM), the apparent size of a GAD-2–SDS complex shows almost a factor of two increase without a significant change in surfactant-to-peptide ratio within a complex, most likely implying an increase in the number of peptides in a complex. For peptide-free solutions, the self-diffusion coefficients of SDS with and without buffer are significantly different at low SDS concentrations but merge above [SDS] = 60 mM. We find that in order to obtain unambiguous information about the hydrodynamic size of a peptide-surfactant complex from diffusion measurements, experiments must be carried out at or below [SDS] = 25 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altieri AS, Hinton DP, Byrd RA (1995) Association of biomolecular systems via pulsed field gradient NMR self-diffusion measurements. J Am Chem Soc 117:7566–7561

    Article  CAS  Google Scholar 

  • Andersson A, Almqvist J, Hagn F, Maler L (2004) Diffusion and dynamics of penetratin in different membrane mimicking media. Biochim Biophys Acta 61:18–25

    Google Scholar 

  • Ando T, Skolnick J (2010) Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. PNAS 107:18457–18462

    Article  PubMed  CAS  Google Scholar 

  • Barhoum S, Yethiraj A (2010) An NMR study of macromolecular aggregation in a model polymer-surfactant solution. J Chem Phys 132:1–9

    Article  Google Scholar 

  • Batchelor GK (1976) Brownian diffusion of particles with hydrodynamic interaction. J Fluid Mech 74:1–29

    Article  Google Scholar 

  • Begotka BA, Hunsader JL, Oparaeche C, Vincent JK, Morris KF (2006) A pulsed field gradient NMR diffusion investigation of enkephalin peptide-sodium dodecyl sulfate micelle association. Magn Reson Chem 44:586–593

    Article  PubMed  CAS  Google Scholar 

  • Berr SS, Jones RRM (1988) Effect of added sodium and lithium chlorides on intermicellar interactions and micellar size of aqueous dodecyl sulfate aggregates as determined by small-angle neutron scattering. Langmuir 6:1247–1251

    Article  Google Scholar 

  • Binks BP, Chatenay D, Nicot C, Urbach W, Waks M (1989) Structural parameters of the myelin transmembrane proteolipid in reverse micelles. Biophys J 55:949–955

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield VA (2000) Survey of biomolecular hydrodynamics. In: Schuster TM (ed) Separations and hydrodynamics, On-Line Biophysics Textbook, Biophysics Society. http://www.biophysics.org

  • Browne MJ, Feng CY, Booth V, Rise ML (2011) Characterization and expression studies of gaduscidin-1 and gaduscidin-2; paralogous antimicrobial peptide-like transcripts from atlantic cod (Gadus morhua). Dev Comp Immunol 35:399–408

    Article  PubMed  CAS  Google Scholar 

  • Buchko GW, Rozek A, Hoyt DW, Cushley RJ, Kennedy MA (1998) The use of sodium dodecyl sulfate to model the apolipoprotein environment. evidence for peptide SDS complexes using pulsed-field-gradient NMR spectroscopy. Biochim Biophys Acta 1392:101–108

    Article  PubMed  CAS  Google Scholar 

  • Chari K, Kowalczyk J, Lal J (2004) Conformation of poly(ethylene oxide) in polymer-surfactant aggregates. J Phys Chem B 108:2857–2861

    Article  CAS  Google Scholar 

  • Chatterjee C, Majumder B, Mukhopadhyay C (2004) Pulsed-field gradient and saturation transfer difference NMR study of enkephalins in the ganglioside GM1 micelle. J Phys Chem B 108:7430–7436

    Article  CAS  Google Scholar 

  • Chen A, Wu D, Johnson CSJ (1995) Determination of the binding isotherm and size of the bovine serum albumin-sodium dodecyl sulfate complex by diffusion-ordered 2D NMR. J Phys Chem 99:828–834

    Article  CAS  Google Scholar 

  • Chinchar V, Bryan L, Silphadaung U, Noga E, Wade D, Rollins-Smith L (2004) Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. J Virol 323:268–275

    Article  CAS  Google Scholar 

  • Cozzolino S, Sanna MG, Valentini M (2008) Probing interactions by means of pulsed field gradient nuclear magnetic resonance spectroscopy. Magn Reson Chem 46:S16–S23

    Article  PubMed  Google Scholar 

  • Deaton KR, Feyen EA, Nkulabi HJ, Morris KF (2001) Pulsed-field gradient NMR study of sodium dodecyl sulfate micelle-peptide association. Magn Reson Chem 39:276–282

    Article  CAS  Google Scholar 

  • Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462:11–28

    Article  PubMed  CAS  Google Scholar 

  • Fernandes JMO, Ruangsri J, Kiron V (2010) Atlantic cod piscidin and its diversification through positive selection. PLoS One 5:e9501

    Article  PubMed  Google Scholar 

  • Gao X, Wong TC (1998) Studies of the binding and structure of adrenocorticotropin peptides in membrane mimics by NMR spectroscopy and pulsed-field gradient diffusion. Biophys J 75:1871–1888

    Article  Google Scholar 

  • Gimel JC, Brown W (1996) A light scattering investigation of the sodium dodecyl sulfate-lysozyme system. J Chem Phys 104:8112–8117

    Article  CAS  Google Scholar 

  • Hinton DP, Johnson CSJ (1994) Simultaneous measurement of vesicle diffusion coefficients and trapping efficiencies by means of diffusion ordered 2D NMR spectroscopy. Chem Phys Lipids 69:175–178

    Article  PubMed  CAS  Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375

    Article  PubMed  CAS  Google Scholar 

  • Iyota H, Krastev R (2009) Miscibility of sodium chloride and sodium dodecyl sulfate in the adsorbed film and aggregate. Colloid Polym Sci 287:425–433

    Article  PubMed  CAS  Google Scholar 

  • Jones JA, Wilkins DK, Smith LJ, Dobson CM (1997) Characterisation of protein unfolding by NMR diffusion measurements. J Biomol NMR 10:199–203

    Article  CAS  Google Scholar 

  • Jones RAL (2002) Soft condensed matter, 1st edition. Oxford University Press Inc., New York

    Google Scholar 

  • Morein S, Trouard TP, Hauksson JB, Rilfors U, Arvidson G, Lindblom G (1996) Two-dimensional 1H-NMR of transmembrane peptides from Escherichia coli phosphatidylglycerophosphate synthase in micelles. Eur J Biochem 241:489–497

    Article  PubMed  CAS  Google Scholar 

  • Morns KF, Johnson CSJ (1993) Resolution of discrete and continuous molecular size distributions by means of diffusion-ordered 2D NMR spectroscopy. J Am Chem Soc 115:4291–4299

    Article  Google Scholar 

  • Morris KF, Johnson CSJ (1992) Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy. J Am Chem Soc 114:3139–3141

    Article  CAS  Google Scholar 

  • Morris KF, Froberg AL, Becker BA, Almeida VK, Tarus J, Larive CK (2005) Using NMR to develop insights into electrokinetic chromatography. Anal Chem 77:254A–263A

    Article  CAS  Google Scholar 

  • Nicolas P (2009) Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J 276:6483–6496

    Article  PubMed  CAS  Google Scholar 

  • Orfi L, Lin M, Larive CK (1998) Measurement of SDS micelle-peptide association using 1H NMR chemical shift analysis and pulsed-field gradient nmr spectroscopy. J Anal Chem 70:1339–1345

    Article  CAS  Google Scholar 

  • Price WS (1997) Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part I. basic theory. Concepts Magn Reson 9:299–336

    Article  CAS  Google Scholar 

  • Qureshi T, Goto NK (2012) Contemporary methods in structure determination of membrane proteins by solution NMR. Top Curr Chem 326:123–185

    Article  PubMed  CAS  Google Scholar 

  • Rege K, Patel SJ, Megeed Z, Yarmush ML (2007) Amphipathic peptide-based fusion peptides and immunoconjugates for the targeted ablation of prostate cancer cells. Cancer Res J 67:6368–2375

    Article  CAS  Google Scholar 

  • Romani AP, Marquezina CA, Ito AS (2010) Fluorescence spectroscopy of small peptides interacting with microheterogeneous micelles. Int J Pharm 383:154–156

    Article  PubMed  CAS  Google Scholar 

  • Roscigno P, Asaro F, Pellizer G, Ortona O, Paduano L (2003) Complex formation between poly(vinylpyrrolidone) and sodium decyl sulfate studied through NMR. J Am Chem Soc 19:9639–9644

    Google Scholar 

  • Ruangsri J, Salger SA, Caipang CM, Kiron V, Fernandes JM (2012) Differential expression and biological activity of two piscidin paralogues and a novel splice variant in atlantic cod (Gadus morhua L.). Fish Shellfish Immun 32:396–406

    Article  PubMed  CAS  Google Scholar 

  • Sammalkorpi M, Karttunen M, Haataja M (2009) Ionic surfactant aggregates in saline solutions: Sodium dodecyl sulfate (SDS) in the presence of excess sodium chloride (NaCl) or calcium chloride (CaCl2). J Phys Chem B 113:5863–5870

    Article  PubMed  CAS  Google Scholar 

  • Sanders CR, Sönnichsen F (2006) Solution NMR of membrane proteins: practice and challenges. Magn Reson Chem 44:s24–s40

    Article  PubMed  CAS  Google Scholar 

  • Sarker M, Rose J, McDonald M, Morrow MR, Booth V (2011) Modifications to surfactant protein b structure and lipid interactions under respiratory distress conditions: Consequences of tryptophan oxidation. J Biomol NMR 50:25–36

    CAS  Google Scholar 

  • Schreiber G, Haran G, Zhou HX (2009) Fundamental aspects of protein-protein association kinetics. Chem Rev 109:839–860

    Article  PubMed  CAS  Google Scholar 

  • Soderman O, Stilbs P (1994) NMR studies of complex surfactant systems. Prog Nucl Magn Reson Spectrosc 26:445–482

    Article  CAS  Google Scholar 

  • Stilbs P (1982) Fourier transform NMR pulsed-gradient spin-echo (FT-PFGSE) self diffusion measurements of solubilization equilibria in SDS solutions. J Colloid Interface Sci 87:385–394

    Article  CAS  Google Scholar 

  • Stilbs P (1983) A comparative study of micellar solubilization for combinations of surfactants and solubilizates using the fourier transform pulsed-gradient spin-echo NMR multicomponent self-diffusion technique. J Colloid Interface Sci 94:463–469

    Article  CAS  Google Scholar 

  • Tulumello DV, Deber CM (2009) SDS micelles as a membrane-mimetic environment for transmembrane segments. J Biochem 48:12096–12103

    Article  CAS  Google Scholar 

  • Wang G (1999) Structural biology of antimicrobial peptides by NMR spectroscopy. Curr Org Chem 10:569–581

    Article  Google Scholar 

  • Wang G (2008) NMR studies of a model antimicrobial peptide in the micelles of SDS, dodecylphosphocholine, or dioctanoylphosphatidylglycerol. Open Magn Reson J 1:9–15

    Article  Google Scholar 

  • Whitehead TL, Jones LM, Hicks RP (2001) Effects of the incorporation of CHAPS into SDS micelles on neuropeptide-micelle binding: separation of the role of electrostatic interactions from hydrophobic interactions. Biopolymers 58:593–605

    Article  PubMed  CAS  Google Scholar 

  • Whitehead TL, Jones LM, Hicks RP (2004) PFG-NMR investigations of the binding of cationic neuropeptides to anionic and zwitterionic micelles. J Biomol Struct Dyn 21:567–576

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Chen A, Johnson CS (1994) An improved diffusion ordered-spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson A 115:260–264

    Article  Google Scholar 

  • Yu L, Tan M, Ho B, Ding JL, Wohland T (2006) Determination of critical micelle concentrations and aggregation numbers by fluorescence correlation spectroscopy: aggregation of a lipopolysaccharide. Anal Chim Acta 556:216–225

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  • Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

All the authors acknowledge financial support from the National Science and Engineering Research Council of Canada (NSERC). We also acknowledge useful suggestions from Carl Michal (University of British Columbia) and Ivan Saika-Voivod (Memorial University of Newfoundland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suliman Barhoum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barhoum, S., Booth, V. & Yethiraj, A. Diffusion NMR study of complex formation in membrane-associated peptides. Eur Biophys J 42, 405–414 (2013). https://doi.org/10.1007/s00249-013-0890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-013-0890-4

Keywords

Navigation